Browse > Article
http://dx.doi.org/10.4014/mbl.1804.04006

Identification, Expression and Preliminary Characterization of a Recombinant Bifunctional Enzyme of Photobacterium damselae subsp. piscicida with Glutamate Decarboxylase/Transaminase Activity  

Andreoni, Francesca (Department of Biomolecular Sciences, University of Urbino "Carlo Bo")
Mastrogiacomo, Anna Rita (Department of Biomolecular Sciences, University of Urbino "Carlo Bo")
Serafini, Giordano (Department of Biomolecular Sciences, University of Urbino "Carlo Bo")
Carancini, Gionmattia (Department of Biomolecular Sciences, University of Urbino "Carlo Bo")
Magnani, Mauro (Department of Biomolecular Sciences, University of Urbino "Carlo Bo")
Publication Information
Microbiology and Biotechnology Letters / v.47, no.1, 2019 , pp. 139-147 More about this Journal
Abstract
Glutamate decarboxylase catalyzes the conversion of glutamate to gamma-aminobutyric acid (GABA), contributing to pH homeostasis through proton consumption. The reaction is the first step toward the GABA shunt. To date, the enzymes involved in the glutamate metabolism of Photobacterium damselae subsp. piscicida have not been elucidated. In this study, an open reading frame of P. damselae subsp. piscicida, showing homology to the glutamate decarboxylase or putative pyridoxal-dependent aspartate 1-decarboxylase genes, was isolated and cloned into an expression vector to produce the recombinant enzyme. Preliminary gas chromatography-mass spectrometry characterization of the purified recombinant enzyme revealed that it catalyzed not only the decarboxylation of glutamate but also the transamination of GABA. This enzyme of P. damselae subsp. piscicida could be bifunctional, combining decarboxylase and transaminase activities in a single polypeptide chain.
Keywords
Photobacterium damselae subsp. piscicida; bifunctional enzyme; glutamate decarboxylases; ${\gamma}$-aminobutiric acid transaminase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Balado M, Benzekri H, Labella AM, et al. 2017. Genomic analysis of the marine fish pathogen Photobacterium damselae subsp. piscicida?: Insertion sequences proliferation is associated with chromosomal reorganisations and rampant gene decay. Infect. Genet. Evol. 54: 221-229.   DOI
2 Andreoni F, Boiani R, Serafini G, et al. 2013. Isolation of a novel gene from Photobacterium damselae subsp. piscicida and analysis of the recombinant antigen as promising vaccine candidate. Vaccine 31: 820-826.   DOI
3 Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23: 673-679.   DOI
4 Lukashin AV, Borodovsky M. 1998. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 26: 1107-1115.   DOI
5 Altschul SF, Wootton JC, Michael Gertz E, Agarwala R, Morgulis A, Schaffer AA, et al. 2005. Protein database searches using compositionally adjusted substitution matrices. FEBS J. 272: 5101-5109.   DOI
6 Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43: D222-226.   DOI
7 Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. 2017. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45: D200-D203.   DOI
8 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI
9 Yang SY, Lin Q, Lu ZX, Lu FX, Bie XM, Zou XK, et al. 2008. Characterization of a novel glutamate decarboxylase from Streptococcus salivarius ssp. thermophilus Y2. J. Chem. Technol. Biotechnol. 83: 855-861.   DOI
10 Erlander MG, Tobin AJ. 1991. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem. Res. 16: 215-226.   DOI
11 Jakobs C, Jaeken J, Gibson KM. 1993. Inherited disorders of GABA metabolism. J. Inherit. Metab. Dis. 16: 704-715.   DOI
12 Ting Wong CG, Bottiglieri T, Snead OC. 2003. GABA, ${\gamma}$-hydroxybutyric acid, and neurological disease. Ann. Neurol. 54: S3-S12.
13 Park KB, Oh SH. 2007. Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresour. Technol. 98: 312-319.   DOI
14 Xu N, Wei L, Liu J. 2017. Biotechnological advances and perspectives of gamma-aminobutyric acid production. World J. Microbiol. Biotechnol. 33: 1-11.   DOI
15 Foerster CW, Foerster HF. 1973. Glutamic acid decarboxylase in spores of Bacillus megaterium and its possible involvement in spore germination. J. Bacteriol. 114: 1090-1098.   DOI
16 Coleman ST, Fang TK, Rovinsky SA, Turano FJ, Moye-Rowley WS. 2001. Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J. Biol. Chem. 276: 244-250.   DOI
17 John RA. 1995. Pyridoxal phosphate-dependent enzymes. Biochim. Biophys. Acta 1248: 81-96.   DOI
18 Schummer C, Delhomme O, Appenzeller BMR, Wennig R, Millet M. 2009. Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta 77: 1473-1482.   DOI
19 Sobolevsky TG, Revelsky AI, Miller B, Oriedo V, Chernetsova ES, Revelsky IA. 2003. Comparison of silylation and esterification/acylation procedures in GC-MS analysis of amino acids. J. Sep. Sci. 26: 1474-1478.   DOI
20 Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH. 2000. Cn3D: sequence and structure views for Entrez. Trends Biochem. Sci. 25: 300-302.   DOI
21 Hiraga K, Ueno Y, Oda K. 2008. Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate. Biosci. Biotechnol. Biochem. 72: 1299-1306.   DOI
22 Halket JM, Zaikin VG. 2003. Derivatization in mass spectrometry-1. Silylation. Eur. J. Mass Spectrom. 9: 1-21.   DOI
23 Harris DC. 2010. Quantitative chemical analysis, pp 565-594. 8th Ed. W.H. Freeman and Company, New York.
24 Lee KW, Shim JM, Yao Z, Kim JA, Kim HJ, Kim JH. 2017. Characterization of a glutamate decarboxylase (GAD) from Enterococcus avium M5 isolated from Jeotgal, a Fermented Korean Sea Food. J Microbiol Biotechnol. 28: 1216-1222.
25 Schummer C, Sadiki M, Mirabel P, Millet M. 2006. Analysis of tbutyldimethylsilyl derivatives of chlorophenols in the atmosphere of urban and rural areas in East of France. Chromatographia 63: 189-195.   DOI
26 Ohie T, Fu XW, Iga M, Kimura M, Yamaguchi S. 2000. Gas chromatography-mass spectrometry with tert.-butyldimethylsilyl derivatization: Use of the simplified sample preparations and the automated data system to screen for organic acidemias. J. Chromatogr. B Biomed. Sci. Appl. 746: 63-73.   DOI
27 Wang NC, Lee CY. 2007. Enhanced transaminase activity of a bifunctional L-aspartate 4-decarboxylase. Biochem. Biophys. Res. Commun. 356: 368-373.   DOI
28 Kagan IA, Coe BL, Smith LL, et al. 2008. A validated method for gas chromatographic analysis of ${\gamma}$-aminobutyric acid in tall fescue herbage. J. Agric. Food Chem. 56: 5538-5543.   DOI
29 Shelp BJ, Bown AW, McLean MD. 1999. Metabolism and functions of ${\gamma}$-aminobutyric acid. Trends Plant Sci. 4: 446-452.   DOI
30 Liao J, Wu X, Xing Z, et al. 2017. ${\gamma}$-aminobutyric acid accumulation in tea (Camellia sinensis L.) through the GABA shunt and polyamine degradation pathways under anoxia. J. Agric. Food Chem. 65: 3013-3018.   DOI
31 De Biase D, Tramonti A, John RA, Bossa F. 1996. Isolation, overexpression, and biochemical characterization of the two isoforms of glutamic acid decarboxylase from Escherichia coli. Protein. Expr. Purif. 8: 430-438.   DOI
32 Cotter PD, Gahan CGM, Hill C. 2001. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol. Microbiol. 40: 465-475.   DOI
33 Waterman SR, Small PLC. 2003. Identification of the promoter regions and sigma(s)-dependent regulation of the gadA and gadBC genes associated with glutamate-dependent acid resistance in Shigella flexneri. FEMS Microbiol. Lett. 225: 155-160.   DOI
34 Capitani G, De Biase D, Aurizi C, et al. 2003. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J. 22: 4027-4037.   DOI
35 Andreoni F, Magnani M. 2014. Photobacteriosis: prevention and diagnosis. J. Immunol. Res. 2014: 793817.
36 Gibson KM, Gupta M, Pearl PL, Tuchman M, Vezina LG, Snead III OC, et al. 2003. Significant behavioral disturbances in succinic semialdehyde dehydrogenase (SSADH) deficiency (Gamma-Hydroxybutyric aciduria). Biol. Psychiatry 54: 763-768.   DOI
37 de Carvalho LPS, Ling Y, Shen C, Warren JD, Rhee KY. 2011. On the chemical mechanism of succinic semialdehyde dehydrogenase (GabD1) from Mycobacterium tuberculosis. Arch. Biochem. Biophys. 509: 90-99.   DOI
38 Feehily C, O'Byrne CP, Karatzas KAG. 2013. Functional ${\gamma}$-aminobutyrate shunt in Listeria monocytogenes: Role in acid tolerance and succinate biosynthesis. Appl. Environ. Microbiol. 79: 74-80.   DOI
39 Xiong W, Brune D, Vermaas WFJ. 2014. The ${\gamma}$-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Mol. Microbiol. 93: 786-796.   DOI
40 Feehily C, Karatzas KAG. 2013. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J. Appl. Microbiol. 114: 11-24.   DOI
41 Shapiro N, Kramer M, Goldberg I, Vigalok A. 2010. Straightforward radical organic chemistry in neat conditions and "on water." Green Chem. 12: 582-584.   DOI
42 Shapiro N, Vigalok A. 2008. Highly efficient organic reactions "on water", "in water", and both. Angew. Chemie - Int. Ed. 47: 2849-2852.   DOI
43 Vanoye L, Favre-Raguillon A, Aloui A, Philippe R, De Bellefon C. 2013. Insights in the aerobic oxidation of aldehydes. RSC Adv. 3: 18931-18937.   DOI
44 Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, et al. 2003. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 100: 10181-10186.   DOI