• Title/Summary/Keyword: glucose-uptake

Search Result 438, Processing Time 0.026 seconds

Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils

  • Wang, Xinbo;Tang, Mingyu;Zhang, Yuming;Li, Yansong;Mao, Jingdong;Deng, Qinghua;Li, Shusen;Jia, Zhenwei;Du, Liyin
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.76.1-76.14
    • /
    • 2022
  • Background: Clinical dexamethasone (DEX) treatment or stress in bovines results in extensive physiological changes with prominent hyperglycemia and neutrophils dysfunction. Objectives: To elucidate the effects of DEX treatment in vivo on cellular energy status and the underlying mechanism in circulating neutrophils. Methods: We selected eight-month-old male bovines and injected DEX for 3 consecutive days (1 time/d). The levels of glucose, total protein (TP), total cholesterol (TC), and the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in blood were examined, and we then detected glycogen and adenosine triphosphate (ATP) content, phosphofructosekinase-1 (PFK1) and glucose-6-phosphate dehydrogenase (G6PDH) activity, glucose transporter (GLUT)1, GLUT4, sodium/glucose cotransporter (SGLT)1 and citrate synthase (CS) protein expression and autophagy levels in circulating neutrophils. Results: DEX injection markedly increased blood glucose, TP and TC levels, the Ca2+/P5+ ratio and the neutrophil/lymphocyte ratio and significantly decreased blood IL-1β, IL-6 and TNF-α levels. Particularly in neutrophils, DEX injection inhibited p65-NFκB activation and elevated glycogen and ATP contents and SGLT1, GLUT1 and GR expression while inhibiting PFK1 activity, enhancing G6PDH activity and CS expression and lowering cell autophagy levels. Conclusions: DEX induced neutrophils glucose uptake by enhancing SGLT1 and GLUT1 expression and the transformation of energy metabolism from glycolysis to pentose phosphate pathway (PPP)-tricarboxylic acid (TCA) cycle. This finding gives us a new perspective on deeper understanding of clinical anti-inflammatory effects of DEX on bovine.

Ginsenoside Rg3 ameliorates myocardial glucose metabolism and insulin resistance via activating the AMPK signaling pathway

  • Ni, Jingyu;Liu, Zhihao;Jiang, Miaomiao;Li, Lan;Deng, Jie;Wang, Xiaodan;Su, Jing;Zhu, Yan;He, Feng;Mao, Jingyuan;Gao, Xiumei;Fan, Guanwei
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.235-247
    • /
    • 2022
  • Background: Ginsenoside Rg3 is one of the main active ingredients in ginseng. Here, we aimed to confirm its protective effect on the heart function in transverse aortic coarctation (TAC)-induced heart failure mice and explore the potential molecular mechanisms involved. Methods: The effects of ginsenoside Rg3 on heart and mitochondrial function were investigated by treating TAC-induced heart failure in mice. The mechanism of ginsenoside Rg3 for improving heart and mitochondrial function in mice with heart failure was predicted through integrative analysis of the proteome and plasma metabolome. Glucose uptake and myocardial insulin sensitivity were evaluated using micro-positron emission tomography. The effect of ginsenoside Rg3 on myocardial insulin sensitivity was clarified by combining in vivo animal experiments and in vitro cell experiments. Results: Treatment of TAC-induced mouse models with ginsenoside Rg3 significantly improved heart function and protected mitochondrial structure and function. Fusion of metabolomics, proteomics, and targeted metabolomics data showed that Rg3 regulated the glycolysis process, and Rg3 not only regulated glucose uptake but also improve myocardial insulin resistance. The molecular mechanism of ginsenoside Rg3 regulation of glucose metabolism was determined by exploring the interaction pathways of AMPK, insulin resistance, and glucose metabolism. The effect of ginsenoside Rg3 on the promotion of glucose uptake in IR-H9c2 cells by AMPK activation was dependent on the insulin signaling pathway. Conclusions: Ginsenoside Rg3 modulates glucose metabolism and significantly ameliorates insulin resistance through activation of the AMPK pathway.

Antidiabetic Effect of Aurantii Fructus Immaturus in Streptozotocin-induced Diabetes Model of Mice (Streptozotocin 유도 당뇨병 생쥐 모델에서 지각 추출물의 항당뇨 효과)

  • Kyung-Jae Yi;Ji-Sung Im;Ji-Eun Kim;Su-Kyung Lee;Hyun-Joo Kim;Yung-Sun Song
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • The aim of this study is to evaluate the antidiabetic effect of the water extract of Aurantii fructus immaturus (WAF), in diabetic models using enzyme, cells and mice, and to suggest a putative mechanism explaining its antidiabetic effect. In an enzyme model using the enzyme α-glucosidase, WAF had no significant effect on α-glucosidase, as compared with acarbose, an antidiabetic drug. Nonetheless, WAF was capable of reducing the blood glucose levels during oral sucrose tolerance test and oral glucose tolerance test, implying that there would be other antidiabetic pathways in no relation to inhibition of α-glucosidase. In cell models using RIN-m5f β-cells and L6 myotubes, WAF, at its non-cytotoxic doses, augmented the secretion of insulin in RIN-m5f β-cells stimulated with 5 mM glucose. In addition, it enhanced the cellular uptake of glucose in L6 myotubes stimulated with deprivation of glucose for 12 h. Therefore, it is most likely that WAF may exert its antidiabetic effects, at least in part, by enhancing insulin secretion and glucose uptake. Meanwhile, in diabetic mice induced with peritoneal injection of streptozotocin (STZ), WAF significantly improved fast blood glucose levels, glycosylated hemoglobin levels, body weight loose, blood pressure, and diabetic adverse effects on functions of the kidney and the liver. Taken together, the water extract of Aurantii fructus immaturus may ameliorate diabetes in mice injected with STZ, at least in part, by enhancing insulin secretion and glucose uptake.

Effect of Acutely Increased Glucose Uptake on Insulin Sensitivity in Rats (단기간의 당섭취 증가가 인슐린 감수성에 미치는 영향)

  • Kim, Yong-Woon;Ma, In-Youl;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.53-66
    • /
    • 1997
  • Insulin resistance is a prominent feature of diabetic state and has heterogeneous nature. However, the pathogenetic sequence of events leading to the emergence of the defect in insulin action remains controversial. It is well-known that prolonged hyperglycemia and hyperinsulinemia are one of the causes of development of insulin resistance, but both hyperglycemia and hyperinsulinemia stimulate glucose uptake in peripheral tissue. Therefore, it is hypothesized that insulin resistance may be generated by a kind of protective mechanism preventing cellular hypertrophy. In this study, to evaluate whether the acutely increased glucose uptake inhibits further glucose transport stimulated by insulin, insulin sensitivity was measured after preloaded glucose infusion for 2 hours at various conditions in rats. And also, to evaluate the mechanism of decreased insulin sensitivity, insulin receptor binding affinity and glucose transporter 4 (GLUT4) protein of plasma membrane of gastrocnemius muscle were assayed after hyperinsulinemic euglycemic clamp studies. Experimental animals were divided into five groups according to conditions of preloaded glucose infusion: group I, basal insulin ($14{\pm}1.9{\mu}U/ml$) and basal glucose ($75{\pm}0.7mg/dl$), by normal saline infusion; group II, normal insulin ($33{\pm}3.8{\mu}U/ml$) and hyperglycemia ($207{\pm}6.3mg/dl$), by somatostatin and glucose infusion; group III, hyperinsulinemia ($134{\pm}34.8{\mu}U/ml$) and hyperglycemia ($204{\pm}4.6mg/dl$), by glucose infusion; group IV, supramaximal insulin ($5006{\pm}396.1{\mu}U/ml$) and euglycemia ($l00{\pm}2.2mg/dl$), by insulin and glucose infusion; group V, supramaximal insulin ($4813{\pm}687.9{\mu}U/ml$) and hyperglycemia ($233{\pm}3.1mg/dl$), by insulin and glucose infusion. Insulin sensitivity was assessed with hyperinsulinemic euglycemic clamp technique. The amounts of preloaded glucose infusion(gm/kg) were $1.88{\pm}0.151$ in group II, $2.69{\pm}0.239$ in group III, $3.54{\pm}0.198$ in group IV, and $4.32{\pm}0.621$ in group V. Disappearance rates of glucose (Rd, mg/kg/min) at steady state of hyperinsulinemic euglycemic clamp studies were $16.9{\pm}3.88$ in group I, $13.5{\pm}1.05$ in group II, $11.2{\pm}1.17$ in group III, $13.2{\pm}2.05$ in group IV, and $10.4{\pm}1.01$ in group V. A negative correlation was observed between amount of preloaded glucose and Rd (r=-0.701, p<0.001) when all studies were combined. Insulin receptor binding affinity and content of GLUT4 were not significantly different in all experimental groups. These results suggest that increased glucose uptake may inhibit further glucose transport and lead to decreased insulin sensitivity.

  • PDF

Mammary Performance of First Lactation Bali Cows (Bibos banteng) Fed Grass-Legume Based Diets in Relation to the Role of Glucose

  • Sukarini, I.A.M.;Sastradipradja, Djokowoerjo;Nusada, N.;Mahardika, I.G.;Kiranadi, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.615-623
    • /
    • 2001
  • A study of mammary function in relation to glucose metabolism of first lactation Bali cows on grass-legume diets was carried out using 12 primiparous cows (initial BW $263.79{\pm}21.66kg$) for 16 weeks starting immediately post calving. The animals were randomly allocated into 4 dietary treatment groups R1, R2, R3 and R4, receiving from the last 2 months of pregnancy onwards, rations based on a mixture of locally available grass and legume feed ad libitum. On a DM basis R1 contained 70% elephant grass (PP, Penicetum purpureum) plus 30% Gliricidia sepia leaves (GS), R2 was 30% PP plus 25% GS supplemented with 55% Hibiscus tilliacius leaves (HT, defaunating effect), R3 and R4 were 22.5% PP+41.25% GS+11.25% HT+25% concentrate, with R4 supplemented with zinc-diacetate. TDN, CP and zinc contents of the diets were 58.2%, 12.05% and 18.3 mg/kg respectively for R1, 65.05%, 16.9% and 25.6 mg/kg respectively for R2, 66.03%, 16.71% and 29.02 mg/kg respectively for R3 and 66.03%, 16.71% and 60.47 mg/kg respectively for R4. Milk production and body weights were monitored, an energy and protein balance trial conducted, overall glucose kinetics parameters assessed, mammary blood flow (MBF) and metabolite arteriovenous differences (${\Delta}AVs$) measured to get uptake data and mammary performance relationships. Parameters of glucose kinetics at peak lactation or during dry condition were not affected by ration quality. Glucose pool size, space of distribution and flux increased by 61.77, 62.26 and 82.08%, respectively, during lactation compared to the dry period. Mean glucose flux of lactating Bali cows was $5.52mg/min.kgBW^{0.807}$ which resembles the range of values of temperate dairy cows. Calculation showed that glucose requirements for maintenance, milk lactose and fat-glycerol synthesis, and the formation of NADPH reached 461.69 g for a yield of 1 kg/d or equal to 320.62 mg/min, which was less than the average glucose flux of lactating Bali cows of 481.35 mg/min. Mammary blood flow (MBF) values ranged from 56 to 83 l/h for the different treatments and the ratio MBF per kg milk produced improved from av. 1540 l/kg for R1 to av. 967 l/kg for R4 treated cows. Mammary glucose uptake ranged from 6.27 to 12.03 g/h or 120 to 140 g/kg milk. Glucose uptake was mass-wise 2 to 4 times the amount secreted as lactose, which indicated values less than the calculated mammary glucose needs and that little lactose was synthesized. The excess glucose taken-up was used for other metabolic processes. Linear relationships between metabolite ${\Delta}AVs$ and arterial blood plasma concentration [A] showed that in Bali cows triglycerides (TG), phenylalanine (Phe) and tyrosine (Tyr) have high coefficients of determination, i.e. 0.77, 0.81 and 0.69, respectively. For glucose, the relationship is quadratic with an $R^2$ value of 0.49. It was concluded that lactose synthesis was inadequate, which led to a speculation that milk yield could be improved by increased lactose synthesis.

Glucose Transport through N-Acetylgalactosamine Phosphotransferase System in Escherichia coli C Strain

  • Kim, Hyun Ju;Jeong, Haeyoung;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1047-1053
    • /
    • 2022
  • When ptsG, a glucose-specific phosphotransferase system (PTS) component, is deleted in Escherichia coli, growth can be severely poor because of the lack of efficient glucose transport. We discovered a new PTS transport system that could transport glucose through the growth-coupled experimental evolution of ptsG-deficient E. coli C strain under anaerobic conditions. Genome sequencing revealed mutations in agaR, which encodes a repressor of N-acetylgalactosamine (Aga) PTS expression in evolved progeny strains. RT-qPCR analysis showed that the expression of Aga PTS gene increased because of the loss-of-function of agaR. We confirmed the efficient Aga PTS-mediated glucose uptake by genetic complementation and anaerobic fermentation. We discussed the discovery of new glucose transporter in terms of different genetic backgrounds of E. coli strains, and the relationship between the pattern of mixed-acids fermentation and glucose transport rate.

Effect of Submerged Culture of Ceriporia lacerata Mycelium on Insulin Signaling Pathway in 3T3-L1 Cell (Ceriporia lacerata 균사체 배양물이 3T3-L1 세포에서 인슐린 신호 전달에 미치는 영향)

  • Shin, Eun Ji;Kim, Ji-Eun;Kim, Ji-Hye;Park, Yong Man;Yoon, Sung Kyoon;Jang, Byeong-Churl;Lee, Sam-Pin;Kim, Byoung-Cheon
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.325-330
    • /
    • 2016
  • In this study, we evaluated the antidiabetic effect of submerged culture of Ceriporia lacerata mycelium (CL01) on glucose uptake and the expression of mRNA and protein of major signal markers of insulin signaling pathway in 3T3-L1 adipocytes. After 3T3-L1 adipocytes were pre-treated by CL01 (0, 2, 10 mg/ml) for 8 hours, followed with treatment of insulin, the glucose uptake levels significantly increased by more 55.1%, 94.4% than negative control respectively (p<0.01, 0.001) in a dose-dependent manner. However, in case of CL01 pre-treatment without insulin, the glucose uptake did not increase compared with insulin-treated 3T3-L1. Also we demonstrated that the protein expression levels of pIR β, pAkt, pPI3K and pAMPK and the mRNA expression levels of GLUT4 in adipocytes inducing insulin resistance increased in CL01-treated group compared with negative control. These results demonstrated that CL01 affected glucose metabolism and the protein and gene expression through insulin signaling pathway, and increased glucose uptake levels effectively. More than 90% of those who have suffered for type 2 diabetes are more likely to have from hyperinsulinemia, hypertension, obesity and etc. because of altered insulin signaling pathway. So, it is probably considered that intake of CL01 may treat type 2 diabetes by normalization of insulin signaling pathway, and it will provide useful evidences regarding a mechanism for cure of type 2 diabetes.

Comparative Studies on the Utilization of Glucose in the Mammary Gland of Crossbred Holstein Cattle Feeding on Different Types of Roughage during Different Stages of Lactation

  • Chaiyabutr, N.;Komolvanich, S.;Preuksagorn, S.;Chanpongsang, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.3
    • /
    • pp.334-347
    • /
    • 2000
  • The present experiment was carried out to study the utilization of glucose in the mammary gland of crossbred Holstein cattle during feeding with different types of roughage. Sixteen first lactating crossbred Holstein cattle which comprised eight animals of two breed types, Holstein Friesian${\times}$Red Sindhi ($50{\times}50=50%$ HF) and Holstein Friesian${\times}$Red Sindhi ($87.5{\times}12.5=87.5%$ HF). They were divided into four groups of 4 animals each of the same breed. The utilization of glucose in the mammary gland was determined by measuring rates of glucose uptake and the incorporation of glucose into milk components in both groups of 50% HF and 87.5% HF animals feeding on either hay or urea treated rice straw. In early lactation, there were no significant differences of the total glucose entry rate and glucose carbon recycling among groups of crossbred animals feeding on either hay or urea treated rice straw. During lactation advance, the total glucose turnover rates and recycling of carbon glucose of crossbred HF animals feeding on urea treated rice straw were markedly higher than those of crossbred HF animals feeding on hay as roughage, whereas there were no significant changes for both groups of crossbred animals feeding on hay. The percentages and values of non-mammary glucose utilization showed an increase during lactation advance in the same group of both 50% HF and 87.5% HF animals. The percentage of glucose uptake for utilization in the synthesis of milk lactose by the mammary gland was approximately 62% for both groups of 87.5% HF and by approximately 55% for both groups of 50% HF animals feeding on either hay or urea treated rice straw. Intracellular glucose 6-phosphate metabolized via the pentose phosphate pathway accounted for the NADPH (reducing equivalent) of fatty acid synthesis in the mammary gland being higher in 87.5% HF animals during mid-lactation. A large proportion of metabolism of glucose via the Embden-Meyerhof pathway in the mammary gland was more apparent in both groups of 50% HF animals than those of 87.5 % HF animals during early and mid-lactation while it markedly increased for both groups of 87.5% HF animals during late lactation. It can be concluded that utilization of glucose in the mammary gland occurs in a different manner for 50% HF and 87.5% HF animals feeding on either hay or urea treated rice straw. The glucose utilization for biosynthetic pathways in the mammary gland of 50% HF animals is maintained in a similar pattern throughout the periods of lactation. A poorer lactation persistency in both groups of 87.5% HF animals occurs during lactation advance, which is related to a decrease in the lactose biosynthetic pathway.

Exploration of optimum conditions for production of saccharogenic mixed grain beverages and assessment of anti-diabetic activity (잡곡당화음료 제조 최적 조건 탐색 및 항당뇨 활성 평가)

  • Lee, Jae Sung;Kang, Yun Hwan;Kim, Kyoung Kon;Yun, Yeong Kyeong;Lim, Jun Gu;Kim, Tae Woo;Kim, Dae Jung;Won, Sang Yeon;Bae, Moo Hoan;Choi, Han Seok;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.1
    • /
    • pp.12-22
    • /
    • 2014
  • Purpose: This study was conducted to establish the production conditions through optimization of the production process of beverages using Aspergillus oryzae CF1001, and to analyze volatile compounds and antidiabetic activity. Methods: The optimum condition was selected using the response surface methodology (RSM), through a regression analysis with the following independent variables gelatinization temperature (GT, $X_1$), saccharogenic time (ST, $X_2$), and dependent variable; ${\Delta}E$ value (y). The condition with the lowest ${\Delta}E$ value occurred with combined 45 min ST and $50^{\circ}C$ GT. The volatile compounds were analyzed quantitatively by GC-MS. Results: Assessment of antidiabetic activity of saccharogenic mixed grain beverage (SMGB) was determined by measurement of ${\alpha}$-glucosidase inhibition activity, and glucose uptake activity and glucose metabolic protein expression by reverse transcriptase polymerase chain reaction (RT-PCR) and western blot analysis. Results of volatile compounds analysis, 62 kinds of volatile compounds were detected in SMGB. Palmitic acid (9.534% ratio), benzaldehyde (8.948% ratio), benzyl ethyl ether (8.792% ratio), ethyl alcohol (8.35% ratio), and 2-amyl furan (4.826% ratio) were abundant in SMGB. We confirmed that ${\alpha}$-glucosidase inhibition activity, glucose uptake activity, and glucose-metabolic proteins were upregulated by SMGB treatment with concentration dependent manner. Conclusion: Saccharogenic mixed grain beverage (SMGB) showed potential antidiabetic activity. Further studies will be needed in order to improve the taste and functionality of SMGB.

Effects of Oral Administration of Herb-combined Remedy of Diabetes Mellitus on Blood Glucose Levels and Anti-oxidative Enzymatic System in Streptozotocin-induced Diabetic Rats (한약복합처방의 경구투여가 Streptozotocin에 의해 유발된 당뇨병 백서의 혈당과 항산화효소계에 미치는 영향)

  • Lee, Eun-Bang;Cho, Myung-Rae;Kim, Jae-Hong;Ryu, Chung-Ryeol
    • Journal of Acupuncture Research
    • /
    • v.25 no.1
    • /
    • pp.57-72
    • /
    • 2008
  • Objectives : The Herb-combined Remedy(HCR) for diabetes mellitus is known as an anti-hyperglycaemic agent. But its exact mechanisms are unclear. The present study was carried out to investigate its anti-hyperglycaemic and anti-oxidative effects in STZ-induced diabetic rats. Methods : Experimental diabetes was induced by injection of STZ(80mg/kg) to ratsvia the peritoneum. The experimental animals were divided into 4 groups : normal group, control group(STZ-induced diabetic rats with no treatment), HCR group(STZ-induced diabetic rats with HCR treatment), MF group(STZ-induced diabetic rats with Metformin treatment). The effects of HCR on STZ-induced diabetes was observed by measuring fasting blood glucose, changes of body weight, food uptake, and water uptake glucose levels in the normal state decline rates in blood glucose levels DPPH free-radical scavenging activity superoxide dismutase in RBC lysate catalase activity in RBC lysate and glutathione reductase activity in RBC lysate. Results : Treatment with HCR regulated blood glucose levels. Treatment with HCR also prevented weight loss in STZ-induced diabetic rats. In addition, oral glucose tolerance decreased following treatment with HCR. Direct anti-oxidative effects on DPPH free-radical scavenging were not observed, but treatment with HCR elevated SOD levels in blood cell lysates from STZ-induced diabetic rats. In addition, the HCR-treatment group showed an elevated tendency to glutathione reductase activity. Conclusions : These results demonstrate that HCR has anti-hyperglycaemic and anti-oxidative effects in STZ-induced diabetic rats.

  • PDF