• 제목/요약/키워드: glucose regulation

검색결과 354건 처리시간 0.027초

A Journey to Understand Glucose Homeostasis: Starting from Rat Glucose Transporter Type 2 Promoter Cloning to Hyperglycemia

  • Ahn, Yong Ho
    • Diabetes and Metabolism Journal
    • /
    • 제42권6호
    • /
    • pp.465-471
    • /
    • 2018
  • My professional journey to understand the glucose homeostasis began in the 1990s, starting from cloning of the promoter region of glucose transporter type 2 (GLUT2) gene that led us to establish research foundation of my group. When I was a graduate student, I simply thought that hyperglycemia, a typical clinical manifestation of type 2 diabetes mellitus (T2DM), could be caused by a defect in the glucose transport system in the body. Thus, if a molecular mechanism controlling glucose transport system could be understood, treatment of T2DM could be possible. In the early 70s, hyperglycemia was thought to develop primarily due to a defect in the muscle and adipose tissue; thus, muscle/adipose tissue type glucose transporter (GLUT4) became a major research interest in the diabetology. However, glucose utilization occurs not only in muscle/adipose tissue but also in liver and brain. Thus, I was interested in the hepatic glucose transport system, where glucose storage and release are the most actively occurring.

Contents of $\beta$-Glucan in Various Cereals and Its Functional Properties

  • Whang, Key
    • Preventive Nutrition and Food Science
    • /
    • 제3권4호
    • /
    • pp.382-386
    • /
    • 1998
  • A soluble dietary fiber, $\beta$-glucan, contained in oat and barley has nutritional benefits such as hypocholesterolemic effects and influences blood glucose regulation. The contents of $\beta$-glucan in both cereals range from 3 to 7% with the exception of a certain barley genotype which contains up to 16% $\beta$-glucan. $\beta$-Glucan is distributed mainly in the cell walls of endosperm and the distal (bran) portion of kernel. Various procedures have been developed for increasing the extraction yield of $\beta$-glucan. Oat gum prepared with weak alkali extractionand alcohol proecipitation following protein removal usually contains 80% $\beta$-glucan.The most commonly used method for $\beta$-glucan quantitiation is an enzymatic procedure combining lichenase plus $\beta$-glucosidase followed by measuring the amount of glucos released by glucose oxidase-peroxidase treatment. The increase in foam-and emulsion-stabilizing capacity of $\beta$-glucan is due to the increase in viscosity of the aqueous phase. Therefore, $\beta$-glucan shows great potentials as a thickener and a stabilizer.

  • PDF

Regulation of Cycloinulooligosaccharide Fructanotransferase Synthesis in Bacillus macerans and Bacillus subtilis

  • Kim, Hwa-Young;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.877-880
    • /
    • 2000
  • Cycloinulooligosaccharide fructanotransferase (CFTase) converts inulin into cyclooligosaccharides consisting of six to eight molecules $\beta$-($2\rightarrow1$)-linked cyclic D-fructofuranose through intramolecular transfructosylation. We have examined the regulation of CFTase synthesis in Bacillus macerans and Bacillus subtilis. Synthesis of the CFTase was induced by inulin and it was subject to carbon catabolite repression (CCR) by glucose in both microorganisms. The DNA sequence upstream of the promoter of the CFTase gene was not involved in the inulin induction and glucose repression of the CFTase gene expression in B. subtilis. This suggests that the DNA element(s) responsible for the inuline induction and glucose repression is located downstream of the promoter region. Unexpectedly, the CCR of the expression of CFTase gene was observed not to be dependent on CcpA protein in B. subtilis.

  • PDF

난황 항체를 이용한 탄수화물의 체내 소화흡수 저해 (Inhibition of carbohydrate digestion using egg yolk antibody)

  • 홍성길;김대원;김정원;이홍석
    • 한국식품조리과학회지
    • /
    • 제18권1호
    • /
    • pp.94-100
    • /
    • 2002
  • The dietary carbohydrates are mainly digested and adsorbed at small intestine. We developed a new food additive as an egg yolk antibody(1gY) against maltase, sucrase and sodium dependent g1ucose cotransporter(SGLT) for the regulation of blood glucose level and weight control. The maltase, sucrase and SGLT were purified from porcine small intestine which is very similar to that of human in physiological characteristics. The purification step contained an ultracentrifugation, ion exchange chromatography and hydrophobic chromatography. The hens were immunized by purified protein and the IgY activities against immunized antigens were determined. This antibody obtained from the immunized hen's egg yolks directly inhibited the activities of maltase and sucrase in vitro. And the IgY delayed and decreased the increment of blood g1ucose level after administration of maltose, sucrose and glucose in rat about 30 to 60%. The results of this study suggest that the IgY inhibiting the carbohydrate digestion could be used as functional food materials for weight control and regulation of blood glucose level in diabetes.

The non-saponin fraction of Korean Red Ginseng (KGC05P0) decreases glucose uptake and transport in vitro and modulates glucose production via down-regulation of the PI3K/AKT pathway in vivo

  • Park, Soo-Jeung;Lee, Dasom;Kim, Dakyung;Lee, Minhee;In, Gyo;Han, Sung-Tai;Kim, Sung Won;Lee, Mi-Hyang;Kim, Ok-Kyung;Lee, Jeongmin
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.362-372
    • /
    • 2020
  • Background: The non-saponin fraction of Korean Red Ginseng has been reported to have many biological activities. However, the effect of this fraction on anti-diabetic activity has not been elucidated in detail. In this study, we investigated the effects of KGC05P0, a non-saponin fraction of Korean Red Ginseng, on anti-diabetic activity in vitro and in vivo. Methods: We measured the inhibition of commercially obtained α-glucosidase and α-amylase activities in vitro and measured the glucose uptake and transport rate in Caco-2 cells. C57BL/6J mice and C57BLKS/Jdb/db (diabetic) mice were fed diets with or without KGC05P0 for eight weeks. To perform the experiments, the groups were divided as follows: normal control (C57BL/6J mice), db/db control (C57BLKS/Jdb/db mice), positive control (inulin 400 mg/kg b.w.), low (KGC05P0 100 mg/kg b.w.), medium (KGC05P0 200 mg/kg b.w.), and high (KGC05P0 400 mg/kg b.w.). Results: KGC05P0 inhibited α-glucosidase and α-amylase activities in vitro, and decreased glucose uptake and transport rate in Caco-2 cells. In addition, KGC05P0 regulated fasting glucose level, glucose tolerance, insulin, HbA1c, carbonyl contents, and proinflammatory cytokines in blood from diabetic mice and significantly reduced urinary glucose excretion levels. Moreover, we found that KGC05P0 regulated glucose production by down-regulation of the PI3K/AKT pathway, which inhibited gluconeogenesis. Conclusion: Our study thereby demonstrated that KGC05P0 exerted anti-diabetic effects through inhibition of glucose absorption and the PI3K/AKT pathway in in vitro and in vivo models of diabetes. Our results suggest that KGC05P0 could be developed as a complementary food to help prevent T2DM and its complications.

Regulation of $\beta$-Xylosidase (XylA) Synthesis in Bacillus stearothermophilus

  • Cho, Ssang-Goo;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권1호
    • /
    • pp.14-20
    • /
    • 1998
  • Syntheses of the B. stearothermophilus xylanolytic enzymes such as xylanases, ${\beta}$-xylosidases, ${\alpha}$-arabinofurano-sidases, and esterases, were observed to be regulated by the carbon source present in the culture media. Xylan induced synthesis of ${\beta}$-xylosidase at the highest level while xylose gave about 30% of the ${\beta}$-xylosidase activity induced by xylan. The lowest syntheses of the xylanolytic enzymes above mentioned were detected in the basal medium containing glucose as a sole carbon source. When a mixture of xylan and glucose was used as a carbon source, we could observe glucose repression of xylanase (about 70-fold) and ${\beta}$-xylosidase (about 40-fold) syntheses. Whereas, the level of the glucose repression of the expression of the xylA gene encoding the major ${\beta}$-xylosidase of B. stearothermophilus was assessed to be about l0-fold when the relative amounts of the xylA transcript were determined. From the sequence of the xylA gene, we could find two CRE-like sequences (CRE-l: nucleotides +124 to +136 and CRE-2:+247 to +259) within the reading frame of the xylA gene, either or both of which were suspected to be involved in catabolite repression of the xylA gene.

  • PDF

CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis

  • Oh, Kyoung-Jin;Han, Hye-Sook;Kim, Min-Jung;Koo, Seung-Hoi
    • BMB Reports
    • /
    • 제46권12호
    • /
    • pp.567-574
    • /
    • 2013
  • Liver plays a major role in maintaining glucose homeostasis in mammals. Under fasting conditions, hepatic glucose production is critical as a source of fuel to maintain the basic functions in other tissues, including skeletal muscle, red blood cells, and the brain. Fasting hormones glucagon and cortisol play major roles during the process, in part by activating the transcription of key enzyme genes in the gluconeogenesis such as phosphoenol pyruvate carboxykinase (PEPCK) and glucose 6 phosphatase catalytic subunit (G6Pase). Conversely, gluconeogenic transcription is repressed by pancreatic insulin under feeding conditions, which effectively inhibits transcriptional activator complexes by either promoting post-translational modifications or activating transcriptional inhibitors in the liver, resulting in the reduction of hepatic glucose output. The transcriptional regulatory machineries have been highlighted as targets for type 2 diabetes drugs to control glycemia, so understanding of the complex regulatory mechanisms for transcription circuits for hepatic gluconeogenesis is critical in the potential development of therapeutic tools for the treatment of this disease. In this review, the current understanding regarding the roles of two key transcriptional activators, CREB and FoxO1, in the regulation of hepatic gluconeogenic program is discussed.

Regulation of glucose and glutamine metabolism to overcome cisplatin resistance in intrahepatic cholangiocarcinoma

  • So Mi Yang;Jueun Kim;Ji-Yeon Lee;Jung-Shin Lee;Ji Min Lee
    • BMB Reports
    • /
    • 제56권11호
    • /
    • pp.600-605
    • /
    • 2023
  • Intrahepatic cholangiocarcinoma (ICC) is a bile duct cancer and a rare malignant tumor with a poor prognosis owing to the lack of an early diagnosis and resistance to conventional chemotherapy. A combination of gemcitabine and cisplatin is the typically attempted first-line treatment approach. However, the underlying mechanism of resistance to chemotherapy is poorly understood. We addressed this by studying dynamics in the human ICC SCK cell line. Here, we report that the regulation of glucose and glutamine metabolism was a key factor in overcoming cisplatin resistance in SCK cells. RNA sequencing analysis revealed a high enrichment cell cycle-related gene set score in cisplatin-resistant SCK (SCK-R) cells compared to parental SCK (SCK WT) cells. Cell cycle progression correlates with increased nutrient requirement and cancer proliferation or metastasis. Commonly, cancer cells are dependent upon glucose and glutamine availability for survival and proliferation. Indeed, we observed the increased expression of GLUT (glucose transporter), ASCT2 (glutamine transporter), and cancer progression markers in SCK-R cells. Thus, we inhibited enhanced metabolic reprogramming in SCK-R cells through nutrient starvation. SCK-R cells were sensitized to cisplatin, especially under glucose starvation. Glutaminase-1 (GLS1), which is a mitochondrial enzyme involved in tumorigenesis and progression in cancer cells, was upregulated in SCK-R cells. Targeting GLS1 with the GLS1 inhibitor CB-839 (telaglenastat) effectively reduced the expression of cancer progression markers. Taken together, our study results suggest that a combination of GLUT inhibition, which mimics glucose starvation, and GLS1 inhibition could be a therapeutic strategy to increase the chemosensitivity of ICC.

Effect of Alpha-2 Adrenergic Agonist on Beta Adrenoceptor-Nediated Control of Blood Glucose in the Fasted Mouse

  • Han, Guie-In;Kim, Mie-Young
    • Archives of Pharmacal Research
    • /
    • 제9권4호
    • /
    • pp.219-222
    • /
    • 1986
  • Dose-dependent increasesin blood glucose were produced by epinephrine and clonidine in fasted male mice. Isoproterenol was ineffective in increasing blood glucose at lower doses ($10^{-8}M$/kg-$10^{-7}M$/kg); with higher dose ($10^{-6}M$/kg) the glucose level was increased. The hyperglycemia induced by epinephrine was inhibited by yobimbine, prazosin and propranolol, indicating that the hyperglycemic effect of epinephrine is mediated by alpha-1, alpha-2 and beta adrenoceptor. When clonidine (10$^{-6}$ M/kg) was administered simultaneously with sioproterenol ($10^{-6}M$/kg), an enhenced hyperglycemic effect was observed. The increment produced by clonidine plus isoproterenol was higher than that by clonidine alone. These increment produced by clonidine plus isoproterenol was higher than that by clonidine alone. These results suggest that stimulation of alpha-2 adrenoceptor may be reponsible for the exertion of the hyperglycemic effect by beta agonists in fasted mice.

  • PDF