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Liver plays a major role in maintaining glucose homeostasis in 
mammals. Under fasting conditions, hepatic glucose pro-
duction is critical as a source of fuel to maintain the basic func-
tions in other tissues, including skeletal muscle, red blood 
cells, and the brain. Fasting hormones glucagon and cortisol 
play major roles during the process, in part by activating the 
transcription of key enzyme genes in the gluconeogenesis such 
as phosphoenol pyruvate carboxykinase (PEPCK) and glucose 6 
phosphatase catalytic subunit (G6Pase). Conversely, gluconeo-
genic transcription is repressed by pancreatic insulin under 
feeding conditions, which effectively inhibits transcriptional ac-
tivator complexes by either promoting post-translational mod-
ifications or activating transcriptional inhibitors in the liver, re-
sulting in the reduction of hepatic glucose output. The tran-
scriptional regulatory machineries have been highlighted as tar-
gets for type 2 diabetes drugs to control glycemia, so under-
standing of the complex regulatory mechanisms for tran-
scription circuits for hepatic gluconeogenesis is critical in the 
potential development of therapeutic tools for the treatment of 
this disease. In this review, the current understanding regarding 
the roles of two key transcriptional activators, CREB and 
FoxO1, in the regulation of hepatic gluconeogenic program is 
discussed. [BMB Reports 2013; 46(12): 567-574]

INTRODUCTION

Glucose functions as a primary fuel for mammals. Thus, the 
maintenance of the glucose homeostasis is one of the primary 
mechanisms for the survival of the organisms. Intake of dietary 
carbohydrates and their absorption in the intestine provide one 
of the primary events to control the rate of glucose metabolism. 
In addition, utilization of glucose by skeletal muscles or adipo-
cytes, as well as the glucose output by the liver, are also key 
components for controlling glucose homeostasis (1).

　The liver is critical in maintaining glucose homeostasis, as 
an organ that controls the equilibrium of plasma and hepatic 
glucose levels by the regulated uptake and storage process and 
the output of glucose (1-3). Under feeding conditions, the in-
take of carbohydrates is generally supplied to the bloodstream 
as a form of glucose via the intestinal system, which can be 
used by peripheral tissues such as skeletal muscle, red blood 
cells, and the brain. Excessive glucose in the liver is initially 
stored as glycogen via glycogenesis, and eventually processed 
as a triglyceride by a combination of metabolic pathways in-
cluding glycolysis, fatty acid biosynthesis, triglyceride syn-
thesis, and maturation. The latter process is termed as 
lipogenesis. The resultant triglyceride is converted into very 
low density lipoprotein (VLDL), and is transported into the 
white adipose tissues (4). Pancreatic insulin plays a major role 
in the process by activating key regulatory enzymes in the 
process by acute post-translational modifications. Furthermore, 
expression of genes involved in the lipogenesis is increased by 
transcription factors such as SREBP-1c and ChREBP. The roles 
of these transcription factors are described elsewhere (5-7). 
Under fasting conditions, the increase in glucagon levels that 
are associated with the decrease in insulin levels in the plasma 
is critical in the glucose output from the liver by initially en-
hancing glycogen breakdown. Prolonged fasting induces de 
novo glucose synthesis from the liver, termed gluconeo-
genesis, by acute activation of key regulatory enzymes that in-
clude glucose 6 phosphatase (G6Pase), fructose 1,6-bi-
sphosphatase (Fbpase), pyruvate carboxylase (PC), and phos-
phoenolpyruvate carboxykinase (PEPCK). Furthermore, chron-
ic activation of gluconeogenesis is ultimately achieved by the 
transcriptional activation of the aforementioned gluconeogenic 
genes (2, 3, 8, 9).
　As major catabolic hormones, glucagon and stress hormone 
cortisol instigate the intracellular signaling pathways to activate 
key transcription factors such as cAMP response element bind-
ing protein (CREB) and forkhead box class Os (FoxOs) (10-13). 
Transcriptional co-activators are necessary to modulate the full 
activity of these transcription factors. The transcriptional co-ac-
tivators that have been linked to these factors include CREB 
binding protein (CBP)/p300, CREB regulated transcription 
co-activator 2 (CRTC2), peroxisome proliferator-activated re-
ceptor gamma co-activator 1 alpha (PGC-1α), and protein argi-
nine methyltransferases (PRMTs) (14-19). On the other hand, 
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the anabolic hormone insulin inhibits the gluconeogenic pro-
gram either via inactivation of transcriptional activators/co-acti-
vators or activation of transcriptional repressors of gluconeo-
genic genes. Examples of the transcriptional repressors include 
orphan nuclear receptor SHP and Transcription factor 7-like2 
(TCF7L2) (20-22).
　In this review, we would like to delineate the molecular 
mechanisms by which CREB and FoxO1 control the hepatic 
gluconeogenic program. We will also provide the involvement 
of transcriptional co-activators and repressors to modulate the 
activity of transcriptional circuits for hepatic gluconeogenesis.

CREB

General facts
CREB is one the first transcription factors purified by DNA af-
finity column using the cyclic AMP binding element (CRE) of 
the somatostatin gene (23). G-protein coupled receptor 
(GPCR)-mediated activation of adenylyl cyclase increased lev-
els of cyclic AMP in the cell, which activates protein kinase A 
(PKA) and the subsequent phosphorylation of Ser 133 of CREB. 
These phosphorylation events lead to the recruitment of his-
tone acetyltransferasese CBP/p300 onto the promoter, and re-
sultant acetylation of histones H3 and H4 (24-26). In addition, 
CREB-dependent transcription is further enhanced by associa-
tion with its CRTC transcriptional co-activators (27, 28). Atte-
nuation of CREB activity can be achieved by dephosphor-
ylation of this residue by Ser/Thr phosphatases such as protein 
phosphatase 1 (PP1) and PP2A (29, 30).

Regulation of hepatic gluconeogenesis
Under fasting conditions, increased secretion of pancreatic 
glucagon leads to the activation of cAMP-CREB-dependent glu-
coneogenesis in the liver. The presence of CRE on the pro-
moters of key gluconeogenic genes including PEPCK, G6Pase, 
Fbpase, and PC were identified, and it was subsequently con-
firmed that CREB could directly activate the transcription of 
these genes (31). The significance of CREB in the regulation of 
hepatic gluconeogenesis was shown by a study utilizing 
alb-ACREB TG mice that express ACREB, a dominant negative 
inhibitor of CREB, in the liver (10). Alb-ACREB TG mice result 
in the reduction in blood glucose levels with reduced mRNA 
levels for hepatic gluconeogenic genes, showing that CREB is 
a physiological transcriptional regulator of gluconeogenesis in 
vivo. Furthermore, acute inhibition of CREB activity by the de-
livery of adenoviral ACREB, siRNA for CREB, or inhibitory 
chemicals also reduces blood glucose levels in vivo, suggest-
ing that CREB could be a potential target for the development 
of anti-diabetes drugs (10, 32).

Transcriptional co-activators for CREB
CBP/p300: CBP and its orthologue p300 are members of his-
tone acetyltransferases (HATs) acetylate lysine residues of both 
histone and non-histone proteins (33, 34). Homozygotic null 

mice for either CBP or p300 are embryonically lethal, showing 
that they are critical in the process of embryonic development 
(35, 36).
　As a transcriptional co-activator for CREB, the role of 
CBP/p300 has been implicated in glucose metabolism. The role 
for CBP in gluconeogenesis is still unresolved. While mice heter-
ozygous for a CBP mutant allele showed insulin sensitive pheno-
types in an earlier report, recent studies utilizing CBP mutant 
mice revealed that the disruption of CREB-CBP interaction did 
not result in reduced hepatic gluconeogenesis (16, 37). Further-
more, mice containing CBP with mutations in CH1 domain are 
resistant to insulin-mediated regulation of hepatic gluconeo-
genesis, and mutant mice producing CH1 null products (ΔCH1) 
display normal fasting gluconeogenesis (14, 38, 39). These data 
suggest that CBP alone is not sufficient to regulate CREB activity 
in mediating hepatic gluconeogenesis. Further studies are neces-
sary to delineate the potential involvement of p300 and other 
HATs in the transcriptional control in this setting.
CRTC2: The CRTC family of transcriptional co-activators (also 
known as TORC, transducers of regulated CREB activity) con-
sists of CRTC1, CRTC2, and CRTC3, which possess an N-ter-
minal CREB binding domain, a central regulatory domain that 
is Ser/Pro-rich, and a C-terminal transactivation domain (40). 
The activity of the CRTC family mainly regulates phosphor-
ylation-dependent changes in cellular localization. Under bas-
al conditions, CRTCs are highly phosphorylated and reside in 
the cytosol via interaction with 14-3-3 proteins. Most notably, 
phosphorylation of Ser 171 (for CRTC2) is mediated by 
AMP-activated protein kinase (AMPK) and its related kinases 
(AMPKRK) such as salt-inducible kinase 1(SIK1) and SIK2. 
Exposure to cAMP agonist or the treatment of calcium ion-
ophore directs a rapid dephosphorylation of CRTCs by in-
activation of kinases and activation of Ser/Thr phosphatases 
(e.g. as PP2B or SMEK/PP4C) (41-43).
　CRTC2 is the most prominent isoform in the mammalian 
liver. Fasting-dependent dephosphorylation of CRTC2 results 
in its nuclear translocation and interaction with CREB to acti-
vate hepatic gluconeogenesis (16). Recent studies also re-
vealed the physiological significance of CRTC2 in the regu-
lation of hepatic gluconeogenesis. Acute knockdown of 
CRTC2 in mice by RNA interference reduces fasting plasma 
glucose with reduction in gluconeogenic gene expression (16, 
44). Similarly, CRTC2 knockout mice exhibit low blood glu-
cose levels and increased glucose tolerance, confirming that 
CRTC2 is critical in the control of hepatic gluconeogenesis and 
energy homeostasis (45). CRTC2 was also shown to co-activate 
other basic leucine zipper transcription factors such as CREBH 
and ATF6, each of which could influence glucose homeostasis 
in mammals (12, 46). Further study is required for the potential 
competition between transcription factors to recruit the CRTC2 
as a transcriptional co-activator.

Downstream targets for CREB in the energy metabolism
CREB is not only important in the direct transcriptional activa-
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tion of gluconeogenic genes, but is also critical in modulating 
the fasting-mediated transcriptional activation of PGC-1α and 
estrogen-related receptor gamma (ERRγ), which serve as cru-
cial transcriptional regulators for the activation of gluconeo-
genic genes during the prolonged fasting or starvation (10, 11, 
19). We have also identified that mammalian phosphatidic 
acid phosphatase Lipin1 is a transcriptional target of CREB, 
and is responsible for the progression of hepatic insulin resist-
ance in the diet-induced or the genetic mouse models of obe-
sity (47). Thus, further study is necessary to delineate the di-
verse roles of CREB in the transcriptional control of energy 
homeostasis.

FoxO1

General facts
FoxOs belong to a subclass within the forkhead family of tran-
scription factors that possess a forkhead box-type DNA binding 
domain, which recognize a specific regulatory element termed 
insulin response element (IRE) on the promoter. Four major 
isoforms, FoxO1, FoxO3, FoxO4, and FoxO6 are identified in 
mammals, and they function as critical transcription factors for 
various cellular signaling pathways in the energy metabolism, 
stress resistance, and longevity (48, 49).
　As in the case of CRTCs, subcellular localization of FoxOs is 
determined by the phosphorylation status of Ser/Thr residues. 
Insulin/PI3K signaling pathway activates Akt/serum and gluco-
corticoid-induced kinase (SGK)-dependent phosphorylation of 
key Ser/Thr residues of FoxOs (Thr24, Ser253, and Ser316 for 
murine FoxO1), which promotes association with 14-3-3, the 
cytoplasmic localization, and subsequent degradation by a 
ubiquitin/proteasome-mediated pathway (50-52). Additionally, 
acetylation of FoxOs (at Lys242, 245, and 262 for murine 
FoxO1) could also modulate their transcriptional activity, 
though the exact outcome of such modification is still in de-
bate (53-55).

Regulation of hepatic gluconeogenesis
Among FoxO family members, FoxO1 has been tightly linked 
with hepatic gluconeogenesis (56). FoxO1 binding sites (IRE) 
were mapped on the promoters of G6Pase and PEPCK, and 
were shown to be critical in mediating the insulin/Akt-depend-
ent inhibition of these genes (57). Further study revealed that 
in conjunction with PGC-1α, FoxO1 confers insulin-depend-
ent regulation of hepatic gluconeogenesis in mouse models 
(18). Chronic deletion of FoxO1 in the liver also results in re-
duced hepatic glucose production in mice, showing that 
FoxO1 is indeed a major transcription factor for modulating 
hepatic gluconeogenesis (56, 58). Recently, a role of FoxO6, 
another member of the FoxO family, was demonstrated in 
hepatic gluconeogenesis, suggesting that some redundancy 
might be present among FoxO transcription factors in the con-
trol of hepatic glucose metabolism in vivo (59).

Transcriptional co-activators for FoxO1
PGC-1α: First identified as a co-activator of PPARγ, PGC-1α 
plays a crucial role in the control of adaptive thermogenesis in 
response to cold shock in brown adipocytes (60). PGC-1α is 
also shown to interact with other transcriptional co-activators 
such as CBP/p300 and the mediator complex to fully activate 
transcriptional initiation (61, 62). Initially, PGC-1α can only 
function as a co-activator for nuclear receptors such as PPARα, 
PPARδ, liver X receptor (LXR)α/β, GR, retinoid-related orphan 
nuclear receptor (ROR) subfamily, and farnesoid X receptor 
(FXR) using its LXXLL motifs. PGC-1α was also shown to co-ac-
tivate various types of transcription factors, such as SREBP, 
Sox9, and FoxO1 (63, 64). 
　In the liver, the expression of PGC-1α is markedly induced 
upon fasting via a CREB-dependent transcriptional mechanism, 
and is critical in maintaining prolonged gluconeogenesis un-
der starvation (10, 19). Indeed, PGC-1α promotes the ex-
pression of gluconeogenic genes by enhancing the trans-
activating potential of FoxO1 (10, 18, 19). Conversely, the de-
pletion of PGC-1α in the liver of mice results in the reduction 
of fasting glucose levels with the reduced expression of gluco-
neogenic genes (65, 66). These data underscore the physio-
logical role of PGC-1α as a transcriptional co-activator for 
FoxO1 in the regulation of hepatic gluconeogenesis.
PRMTs: Protein arginine methyltransferases (PRMTs) catalyze 
the transfer of (a) methyl group to the Arg residues of histones 
and non-histone proteins in eukaryotes. PRMT1 is among the 
eleven mammalian PRMTs that have been identified in mam-
mals to date, and belongs to the type I enzymes that include 
PRMT1, 3, 4, 6, and 8. It catalyzes the formation of asymmetri-
cally dimethylated Arg on its substrates. FoxO1 was recently 
identified as a substrate for PRMT1, and Arg methylation of 
FoxO1 at Arg248 and 250 by PRMT1 enhances nuclear local-
ization of FoxOs, thereby promoting downstream signaling 
such as oxidative stress response (15, 67-69).
　The role of PRMT1 as a co-activator for FoxO1 in the hep-
atic gluconeogenesis was recently established (15, 67). In 
mouse liver, PRMT1-dependent Arg-dimethylation increases 
nuclear localization and chromatin occupancy of FoxO1 on 
the gluconeogenic promoter. Furthermore, either acute knock-
down or chronic haploinsufficiency of PRMT1 in mice reduces 
FoxO1-mediated gluconeogenesis, showing that PRMT1 is crit-
ical in enhancing FoxO1 activity in the physiological context. 
Further study is required to explore the potential involvement 
of other PRMT families in the regulation of gluconeogenesis or 
FoxO1 activity.

TRANSCRIPTIONAL REPRESSORS FOR CREB AND 
FoxO1 IN THE GLUCONEOGENESIS

SHP
SHP, also known as NR0B2, is a member of atypical nuclear 
receptors (NRs) that lack a DNA-binding motif, and mostly 
functions as a transcriptional repressor of NRs via its LXXLL 
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Fig. 1. Models for transcriptional regulation of hepatic gluconeogenesis under fasting and feeding conditions. (A) Transcriptional activation 
of hepatic gluconeogenesis under fasting conditions. Under fasting conditions, increased secretion of pancreatic glucagon triggers activation 
of PKA, which phosphorylates CREB at the serine 133 residue, leading to the increased association of this factor with co-activator 
CBP/p300 onto the chromatin. In addition, PKA promotes dephosphorylation of CRTC2 at the serine 171 residue by inactivating SIK kin-
ases and activating serine/threonine phosphatases SMEK/PP4C and PP2B, leading to the nuclear localization and increased association of 
CRTC2 with chromatin-bound CREB. These events lead to the increased expression of gluconeogenic genes such as PEPCK and G6Pase, 
leading to the increases in hepatic gluconeogenesis during the early phase of fasting. At the same time, CREB/CRTC2 can enhance the ex-
pression of PGC-1α and ERRγ, which are the key transcriptional regulators of hepatic gluconeogenesis during the later phase of fasting. 
PRMP1 is also involved in the regulation of gluconeogenesis by modifying the arginine residues (Arg 248 and 250) of FoxO1 during this 
process. (B) Transcriptional repression of hepatic gluconeogenesis under feeding conditions. By contrast, feeding leads to the reduced plas-
ma concentration of glucagon and enhanced secretion of pancreatic insulin, which leads to the activation of insulin signaling pathways in 
the liver. Activation of Akt leads to the activation of SIK kinases, thus promoting increased phosphorylation of CRTC2 and association with 
14-3-3 (not shown). At the same time, Akt also directly phosphorylates critical residues of FoxO1 (see the text for details), turning off the 
transcription of hepatic gluconeogenesis. Transcriptional repressors for hepatic gluconeogenesis such as SHP, DAX-1, and TCF7L2 are in-
duced under this condition, which helps to ensure the inactivation of transcription for gluconeogenic genes as well as PGC-1α. 

motifs (70, 71). In addition, SHP can inhibit the activity of oth-
er classes of transcription factors, suggesting that atypical NRs 
might function as a more general transcriptional repressor for 
various cellular signaling pathways.
　SHP is ubiquitously expressed in most tissues but shows a 
higher expression in the mammalian liver, suggesting a role in 
the regulation of hepatic energy metabolism (72, 73). Indeed, 
metformin-dependent activation of AMPK leads to the transcrip-
tional induction of SHP in the liver, which in turn reduces hep-
atic glucose output in mice, showing a novel mechanism for 
this glucose-lowering reagent (74). Subsequently, it was shown 
that SHP directly inhibits cAMP-dependent hepatic gluconeo-
genesis by binding to CREB to block the association with 
CRTC2 (20). These results illustrate an alternative mechanism 

by which metformin regulates hepatic glucose production via 
SHP-dependent inhibition of gluconeogenic gene transcription. 
It is worth noting that DAX-1, another member of atypical NRs, 
reduces hepatic glucose production by inhibiting the recruit-
ment of another transcription co-activator for gluconeogenesis, 
PGC-1α, onto the promoters of PEPCK and G6Pase. Further 
study is necessary to delineate the physiological and patho-
logical relevance of these atypical NRs in the regulation of glu-
cose homeostasis.

TCF7L2
TCF7L2 is a member of the LEF/TCF family of transcription fac-
tors with an HMG-box-type DNA-binding domain, and was 
shown as a nuclear transcription factor for the well-known 
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Wnt/β-catenin signaling pathway (75-78). Wnt-mediated cel-
lular signaling promotes the nuclear entry of β-catenin, a tran-
scriptional co-activator of TCF7L2, leading to the activation of 
TCF7L2 target gene transcription. The TCF7L2 signaling path-
way was linked to the developmental processes and pro-
liferation events of cancer cells or stem cells (79). 
　Recently, TCF7L2 has been genetically linked to diabetes, 
and several human single nucleotide polymorphisms (SNPs) 
have been identified within the allele of TCF7L2 and correlate 
with increases in the incidence of this disease (80-84). Recent 
studies also revealed that TCF7L2 can promote insulin secre-
tion in vivo, either by enhancing the secretion of GLP-1 in the 
intestinal endocrine L cells or mediating GLP-1-dependent in-
sulin secretion in the pancreatic β cells (85). 
　The functional role of TCF7L2 as a transcriptional repressor 
for hepatic glucose metabolism was recently described (22, 
86). Under feeding conditions, increased TCF7L2 binds to the 
regulatory elements near CRE and IRE, thereby inhibiting the 
occupancies of CREB and FoxO1 over the gluconeogenic 
promoters. This leads to the inhibition of hepatic gluconeo-
genesis under feeding conditions, which can be mimicked by 
the overexpression of TCF7L2 in the mouse liver. Under in-
sulin-resistant conditions, however, the expression of medium 
and short isoforms of TCF7L2, which are exclusively found in 
the nucleus, are selectively decreased, suggesting that failure 
to inhibit CREB/FoxO1-dependent gluconeogenesis could 
occur. Corroborating this hypothesis, we also found that the 
depletion of TCF7L2 by RNA interference or genetic knockout 
results in hyperglycemia due to the reduction in hepatic 
gluconeogenesis. These data suggest that TCF7L2 is critical in 
the regulation of CREB- and FoxO1-dependent gluconeo-
genesis in both physiological and pathological conditions. 
Further study is necessary to determine whether a similar in-
hibitory loop is present in other TCF7L2-expressing tissues.

CLOSING REMARKS

In this review, we attempted to summarize the role of two ma-
jor transcription factors for hepatic gluconeogenesis, CREB and 
FoxO1 (Fig. 1). Under fasting conditions, the increase in the se-
cretion of glucagon results in the activation of cAMP signaling 
pathway in the liver, leading to the activation of CREB-depend-
ent as well as CBP/p300- and CRTC2-dependent (its co-activa-
tors) transcriptional activation of gluconeogenic genes. 
Interestingly, some of the important transcriptional regulators 
themselves are also transcriptionally induced (e.g. PGC-1α, 
ERRγ), amplifying the magnitude of the gluconeogenic 
response. FoxO1 is also induced under fasting conditions, in 
part due to the lack of insulin/Akt pathway in the liver. The 
transcriptional activity of FoxO1 is greatly enhanced with its 
co-activator PGC-1α, suggesting that this pathway could be 
more critical in the later phase of the adaptive response to 
fasting. Under feeding conditions, the termination of hepatic 
gluconeogenesis is achieved by inhibition of these transcrip-

tional machineries. The direct role of anabolic hormone insulin 
by Akt-dependent modification of FoxO1 is well described. 
Enhanced expression of transcriptional repressors under feed-
ing conditions such as SHP or TCF7L2 also contributes greatly 
to effectively turning off the hepatic gluconeogenesis. The gen-
eration of liver-specific knockout mice for each transcriptional 
regulators is necessary to delineate the complex transcriptional 
regulatory mechanisms for hepatic gluconeogenesis in the 
future.
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