• Title/Summary/Keyword: gluconic acid

Search Result 70, Processing Time 0.023 seconds

Phosphate Solubilization and Plant Growth Promotion by Crop Associated Bacteria (인산용해미생물에 의한 불용성 인의 용해와 식물생장에 미치는 영향)

  • Na, Jung-Heang;Choi, Jin-Ho;Jin, Rong-De;Ko, Hyun-Sun;Park, Ro-Dong;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • Fourteen bacterial strains were isolated from crop rhizosphere and identified as phosphate solubilizing bacteria (PSB) by 16S rRNA analysis. Only 3 strains exhibited a strong ability to solubilize insoluble phosphate in agar medium containing a hydroxyapatite. The rates of P solubilization by isolates were ranged from 200 and $2300\;mg\;L^{-1}$, which are inversely correlated with pH in culture medium. Furthermore, HPLC analyses reveal the production of organic acid from the culture filtrates of PSB. Among these, strain Acinetobacter sp. released only gluconic acid, Pseudomonas orientalis produced gluconic acid which was subsequently converted into 2-ketogluconic acid, and Enterobacter asburiae released acetic acid and succinic acid. On the other hand, P. orientalis and E. asburiae released $372\;mg\;L^{-1}$ and $191\;mg\;L^{-1}$ of IAA into broth culture, respectively, while Acinetobacter sp. did not produce IAA. Furthermore, in vivo study showed that plant growth promoting effect by bacteria generally seemed to be increased IAA production and phosphate solubilization.

Preparation and Properties of Rust-Removing Polymer Gel (녹제거 폴리머겔의 제조 및 특성)

  • Kang, Young-Goo;Kim, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.41-46
    • /
    • 2004
  • The formation of rust on metallic substrate is known to cause the damages and destructions of raw materials, which is one of the leading reasons of sturctural collapses and many kind of hazards in modern industry. Polymer gels with rust removing effects were compounded in this study by employing various kinds of acids like hydrochloric acid, phosphoric acid, gluconic acid, oxalic acid as the rust removing ingredients. TEA(Triethanolamine) as dispersant and hydrophilic chemical were used for effective gelation of acids. Also corrosion inhibitor was added to enable the coating effect and to improve rust removing effect on metallic surface. In order to investigate the rust properites on metallic substrate, artificial rusts were prepared in salt solution, using iron, copper, aluminium and brass as the base metals. The properties of gel compounds were checked by gelation, pH, viscosity, morphology property and rust removing test. Developed gel compounds in this study have a good rust removing property, showing a strong adhesion on horizontal and vertical metallic surface, and can be easily rinsed off by water.

Study on properties of eco-friendly reduction agents for the reduced graphene oxide method

  • Na, Young-il;Song, Young Il;Kim, Sun Woo;Suh, Su-Jeong
    • Carbon letters
    • /
    • v.24
    • /
    • pp.1-9
    • /
    • 2017
  • We studied the basic properties and fabrication of reduced graphene oxide (rGO) prepared using eco-friendly reduction agents in the graphene solution process. Hydrazine is generally used to reduce graphene oxide (GO), which results in polluting emissions as well as fixed nitrogen functional groups on different defects in the graphene sheets. To replace hydrazine, we developed eco-friendly reduction agents with similar or better reducing properties, and selected of them for further analysis. In this study, GO layers were produced from graphite flakes using a modified Hummer's method, and rGO layers were reduced using hydrazine hydrate, L-ascorbic acid, and gluconic acid. We measured the particle sizes and the dispersion stabilities in the rGO dispersed solvents for the three agents and analyzed the structural, electrical, and optical properties of the rGO films. The results showed that the degree of reduction was in the order L-ascorbic acid ${\geq}$ hydrazine > glucose. GO reduced using L-ascorbic acid had a sheet resistance of $121k{\Omega}/sq$, while that reduced using gluconic acid showed worse electrical properties than the other two reduction agents. Therefore, L-ascorbic acid is the most suitable eco-friendly reduction agent that can be substituted for hydrazine.

Fabrication of Reverse Osmosis Membrane with Enhanced Boron Rejection Using Surface Modification (표면개질을 이용하여 붕소 제거율이 향상된 역삼투막의 제조)

  • Lee, Deok-Ro;Kim, Jong Hak;Kwon, Sei;Lee, Hye-Jin;Kim, In-Chul
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.96-104
    • /
    • 2018
  • With the rapid increase in seawater desalination, the importance of boron rejection is rising. This study was conducted to investigate the effect of hydrophilic compounds on surface modification to maximize water flux and increase boron rejection. First, polyamide active layer was fabricated by interfacial polymerization of polysulfone ultrafiltration membrane with M-phenylenediamine (MPD) and trimesoyl chloride (TMC) to obtain Control polyamide membrane. Next, D-gluconic acid (DGCA) and D-gluconic acid sodium salt (DGCA-Na) were synthesized with glutaraldehyde (GA) and hydrochloric acid (HCl) by modifying the surface of Control polyamide membrane. XPS analysis was carried out for the surface analysis of the synthesized membrane, and it was confirmed that the reaction of surface with DGCA and DGCA-Na compounds was performed. Also, FE-SEM and AFM analysis were performed for morphology measurement, and polyamide active layer formation and surface roughness were confirmed. In the case of water flux, the membrane fabricated by the surface modification had a value of 10 GFD or less. However, the boron rejection of the membranes synthesized with DGCA and DGCA-Na compounds were 94.38% and 94.64%, respectively, which were 12.03 %p and 12.29 %p larger than the Control polyamide membrane, respectively.

THE KINETIC STUDIES OF GLUCONIC ACID FERMENTATION (PART 1) Effect of Phenol and Catechol Derivatives on Oxygen Transfer in the Fermentation (Gluconic acid의 발효에 관한 연구(제1보) 발효조중 산소이동에 미치는 Phenol 유도분 및 Catechol 유도분의 영향)

  • LEE Keun-Tai;LEE Kyung-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.205-211
    • /
    • 1978
  • The effect of phenol derivatives (guaiacol, vanillin, o-vanillin, eugenol) and catechol derivatives (pyrogallol, resoicinol) to enhance the volumetric oxygen transfer coefficient, in the aerobic fermentation was studies. Guaiacol, vanillin, o-vanillin, pyrogallol and resorcinol revealed to enchance the volumetric oxygen transfer coefficient, and eugenol had no such ability. The enhancement of the oxygen transfer ability is probably due to the formation of the charge transfer complex by the derivatives and oxygen molecules.

  • PDF

Isolation and Cultural Characteristics of a Phosphate-Solubilizing Bacterium, Aeromonas hydrophila DA57 (인산가용화균 Aeromonas hydrophila DA 57의 분리와 배양 중 가용화특성)

  • Song, Ok-Ryul;Lee, Seung-Jin;Kim, Se-Hoon;Chung, Soo-Yeol;Cha, In-Ho;Choi, Yong-Lark
    • Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.251-256
    • /
    • 2001
  • To develop biofertilizer solubilizing inorganic phosphate, a bacterium having high abilities to solubilize inorganic phosphate were isolated from cultivated soils. The strain was identified to Aeromonas hydrophila DA57, based on the physiological and biochemical properties. The optimum temperature and initial pH to solubilize insoluvle phosphate in sucrose minimal medium were $30^{\circ}C$ and pH 7.0, respectively. In these conditions phosphate solubilizing activities of the strain against three types of insoluble phosphate were quantitatively determined. It was possivle to distinguish between solubilization through release of gluconic acid and still unknown mechanism. Aemmonas hydrophila DA57 harbored a 4.5 kb cryptic plasmid.

  • PDF

Major Metabolites Involved in Skin Blackening of 'Niitaka' Pear Stored under Cold Temperature (신고 배 저온 저장 중 발생하는 과피 흑변에 관여하는 주요 대사체)

  • Lee, Eun Jin
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.359-365
    • /
    • 2014
  • Oriental pear (Pyrus communis L. cv 'Niitaka') was stored at $0^{\circ}C$ for 5 months and major metabolites involved in blackening of the peel were analyzed by untargeted GC-MS and targeted HPLC methods. In this study, peels of sound and skin-blackened pears were analyzed and compared. Skin-blackened fruit was clearly characterized by a distinctive pattern in changes which included a decrease of malic acid, succinic acid, and ascorbic acid, while an increase of fumaric acid, threonine, and gluconic acid, which indicated both reduced metabolic activity and anti-oxidative capacity of the cells. Chlorogenic acid was a major phenolic compound and the peel of sound fruit showed high levels of free phenolic compounds compared than the peel of skin-blackened fruit which are believed to be related to oxidation of phenolics in skin-blackened tissue. The changes or profiling of major metabolites by targeted or untargeted analysis method could become a useful tool for understanding physiology, disorder mechanism, and identifying metabolic networks connecting primary and secondary metabolism in postharvest research.

Isolation and Phosphate-Solubilizing Characteristics of PSM, Aeromonas hydrophila DA33

  • Song, Ok-Ryul;Lee, Seung-Jin;Lee, Mi-Wha;Choi, Si-Lim;Chung, Soo-Yeol;Lee, Young-Gyun;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2001
  • bacterium having high abilities to solubilize in-organic phosphate was isolated from cultivated soils. The strain was identified as Aeromonas hydrophila DA33, based on the physiological and biochemical properties. The optimum temperature and initial pH to solubilize insoluble phosphate in sucrose minimal medium were 3$0^{\circ}C$ and pH 5.0, respectively. In these conditions, phosphate-solubilizing activities of the strain against two types of insoluble phosphate were quantitatively determined. When glucose was used for carborn source, the strain had a marked mineral phospahte solubilizing activity. Inorganic phospahte solubilization was directly related to the pH drop by the strain. Analysis of the culture medium confirmed the production of gluconic acid as the main organic acid released by Aeromonas hydrophila DA33.

  • PDF

Elicitation에 의한 인삼 모상근의 성장 및 이차 대사산물 생산

  • Jeong, Gwi-Taek;Lee, Gwang-Yeon;Hwang, Baek;U, Je-Chang;Park, Don-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.487-488
    • /
    • 2001
  • The effects of biotic elicitors, organic acids, and environmental changes on the growth of Panex. ginseng hairy roots were investigated in the shaking flask culture. Among the organic acid tested, gluconic acid was found to be the most efficient in the hairy roots growth. And citric and succinic acid were facilitated the growth of hairy roots.

  • PDF