Phosphate Solubilization and Plant Growth Promotion by Crop Associated Bacteria

인산용해미생물에 의한 불용성 인의 용해와 식물생장에 미치는 영향

  • Na, Jung-Heang (Division of Applied BioScience and Biotechnology, Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Choi, Jin-Ho (National Institute of Horticultural & Herbal science, RDA) ;
  • Jin, Rong-De (Division of Applied BioScience and Biotechnology, Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Ko, Hyun-Sun (Division of Applied BioScience and Biotechnology, Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Park, Ro-Dong (Division of Applied BioScience and Biotechnology, Institute of Agricultural Science and Technology, Chonnam National University) ;
  • Kim, Kil-Yong (Division of Applied BioScience and Biotechnology, Institute of Agricultural Science and Technology, Chonnam National University)
  • 나정행 (전남대학교 응용생물공학부) ;
  • 최진호 (농촌진흥청 국립원예특작과학원) ;
  • 김영덕 (전남대학교 응용생물공학부) ;
  • 고현선 (전남대학교 응용생물공학부) ;
  • 박노동 (전남대학교 응용생물공학부) ;
  • 김길용 (전남대학교 응용생물공학부)
  • Received : 2008.09.22
  • Accepted : 2008.11.20
  • Published : 2009.02.28

Abstract

Fourteen bacterial strains were isolated from crop rhizosphere and identified as phosphate solubilizing bacteria (PSB) by 16S rRNA analysis. Only 3 strains exhibited a strong ability to solubilize insoluble phosphate in agar medium containing a hydroxyapatite. The rates of P solubilization by isolates were ranged from 200 and $2300\;mg\;L^{-1}$, which are inversely correlated with pH in culture medium. Furthermore, HPLC analyses reveal the production of organic acid from the culture filtrates of PSB. Among these, strain Acinetobacter sp. released only gluconic acid, Pseudomonas orientalis produced gluconic acid which was subsequently converted into 2-ketogluconic acid, and Enterobacter asburiae released acetic acid and succinic acid. On the other hand, P. orientalis and E. asburiae released $372\;mg\;L^{-1}$ and $191\;mg\;L^{-1}$ of IAA into broth culture, respectively, while Acinetobacter sp. did not produce IAA. Furthermore, in vivo study showed that plant growth promoting effect by bacteria generally seemed to be increased IAA production and phosphate solubilization.

14종의 인산용해미생물을 근권으로부터 분하였고, 16S rRNA gene 염기서열에 의하여 동정하였다 그 중 hydroxyapatite를 첨가한 배지에서 인산용해능력이 가장 뛰어난 Acinetobacter sp., Pseudomonas orientalis, Enterobacter asburiae 3종을 선택하였다. 선택된 3종의 미생물에 의해 용해된 인산의 농도는 $200\;mg\;L^{-1}$에서부터 $2300\;mg\;L^{-1}$까지 이르렀으며, 증가된 인산 농도는 배양액의 pH와 역으로 비례하였다. HPLC를 사용하여 유기산을 측정한 결과 Acinetobacter sp.는 gluconic acid를, P. orientalis는 gluconic acid와 2-ketogluconic acid를 그리고 E. asburiae는 acetic acid와 succinic acid를 분비하였다. 한편 P. orientalis와 E. asburiae는 각각 $372\;mg\;L^{-1}$$191\;mg\;L^{-1}$의 IAA 분비하였고, Acinetobacter sp.는 IAA를 생성하지 못했다. 인산용해미생물이 오이의 생장에 미치는 효과를 조사한 결과, P. orientalis를 처리한 시험구가 가장 높았고, E. asburiae, Acinetobacter sp., control 순으로 나타났다. 이러한 식물생장 효과는 인산용해미생물에 의한 불용성 인산용해와 IAA 생산과 관련이 있다고 생각된다.

Keywords

References

  1. Azcon, R., G. Azcon, D. Aghilar, and J.H. Barea. 1978. Effect of plant hormones present in bacterial cultures on the formation and response to vamendomycorrhiza. New Phytol. 80:359-364 https://doi.org/10.1111/j.1469-8137.1978.tb01569.x
  2. Banik, S., and B.K. Dey. 1982. Available phosphate content of and alluvial soil as influenced by inoculation of some isolated phosphate solubilizing bacteria. Plant Soil. 69:353-364 https://doi.org/10.1007/BF02372456
  3. Barea, J.M., E. Navarro and E. Montoya. 1976. Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J. Appl. Bact. 40:129-134 https://doi.org/10.1111/j.1365-2672.1976.tb04161.x
  4. Benizri, E., A. Courtade, C. Picard and A. Guckert. 1998. Role of maize exudates in the production of auxins by Pseudomonas Fluorescens M.3.1. Soil Biol. Biochem. 30:1481-1484 https://doi.org/10.1016/S0038-0717(98)00006-6
  5. Brown, M.E. 1972. Plant growth substances produced by microorganisms of soil and rhizosphere. J. Appl. Bact. 35:443-451 https://doi.org/10.1111/j.1365-2672.1972.tb03721.x
  6. Cheryl, L.P., and R.G. Bernard. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68:3795-3801 https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  7. Datta, M., S. Banik and R.K. Gupta. 1982. Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland. Plant and Soil 69:365-373 https://doi.org/10.1007/BF02372457
  8. Freitas, J.R., M.R. Banerjee and J.J. Germida. 1997. Phosphatesolubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica nupus L.). Biol. Fertil. Soils. 24:358-364 https://doi.org/10.1007/s003740050258
  9. Gaur, A.C., and K.P. Ostwal. 1972. Influence of phosphate dissolving Bacilli on yield and phosphate uptake of wheat crop. Indian J. Exp. Biol. 10:393-394
  10. Goldstein, A.H. 1986. Bacterial mineral phosphate solubilization:Historical perspective and future prospects. Am. J. Altern. Agric. 1:57-65
  11. Goldstein, A.H., K. Braverman and N. Osorio. 1999. Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol. Ecol. 30:295-300 https://doi.org/10.1111/j.1574-6941.1999.tb00657.x
  12. Halder, A.K., A.K. Misra and P.K. Chakrabarty. 1991. Solubilization of inorganic phosphates by Bradyrhizobium. Indian J. Exp. Biol. 29:28-31
  13. Halder, A.K., and P.K. Chakrabartty. 1993. Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol. 38:325-330 https://doi.org/10.1007/BF02898602
  14. Hilda, R., and F. Reynaldo. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv.17:319-339 https://doi.org/10.1016/S0734-9750(99)00014-2
  15. Hu, H.Q., J.Z. He, X.Y. Li, and F. Liu. 2001. Effect of several organic acids on phosphate adsorption by variable charge soils of central China. Environ. Int. 26:353-358 https://doi.org/10.1016/S0160-4120(01)00012-5
  16. Hussain, A., and V. Vancura. 1970. Formation of biologically active substances by rhizosphere bactieria and their effect on plant growth. Folia Microbiol. 15:468-478 https://doi.org/10.1007/BF02880191
  17. Hwangbo, H., D.R. Park, W.Y. Kim, Y.S. Rim, H.K. Park, H.T. Kim, J. SunSuh and Y.K. Kim. 2003. 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 47:87-92. https://doi.org/10.1007/s00284-002-3951-y
  18. Illmer, P., and F. Schimmer. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol. Biochem. 24:389-395 https://doi.org/10.1016/0038-0717(92)90199-8
  19. Illmer, P., A. Barbato, and F. Schinner. 1995. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol. Biochem. 27:265-270 https://doi.org/10.1016/0038-0717(94)00205-F
  20. Jones, D.L., and P.R. Darrah. 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil 166:247-257 https://doi.org/10.1007/BF00008338
  21. Kim, K.Y., D. Jordan and H.B. Krishnan. 1997a. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere can solubilize hydroxyapatite. FEMS Microbiol. Lett. 153:273-277 https://doi.org/10.1111/j.1574-6968.1997.tb12585.x
  22. Kim, K.Y., G.A. McDonald and D. Jordan. 1997b. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coil in culture medium. Biol. Fertil. Soils. 24:347-352 https://doi.org/10.1007/s003740050256
  23. Kloepper, J.W., K. Lifshitz and M.N. Schroth. 1988. Pseudomonas inoculants to benefit plant production. ISI Atlas Sci. Anim. Plant. 60-64
  24. Lindow, S.E., C. Desurmont, R. Elkins, G. McGourty, E. Clark and M.T. Brandl. 1998. Occurrence of indole-3-acetic acid producing bacteria on pear trees and their association with fruit russet. Phytopathology 88:1149-1157 https://doi.org/10.1094/PHYTO.1998.88.11.1149
  25. Liu, S.T., L.Y. Lee, C.Y. Tai, C.H. Horng, Y.S. Chang, J.H. Wolfram, R. Rogers and A.H. Goldstein. 1992. Cloning of and Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101. J. Bacterial. 174:5814-5819
  26. Moghimi, A., and M.E. Tate. 1978. Does 2-ketogluconate chelate calcium in the pH range 2.4 to 6.4. Soil Biol. Biochem. 10:289-292 https://doi.org/10.1016/0038-0717(78)90024-X
  27. Satter, M.A., and A.C. Gaur. 1987. Production of auxins and gibberellins by phosphate dissolving microorganisms. Zentralbl. Microbiol. 142:393-395
  28. Shekhar, N.C., S. Bhadauria, P. Kumar, H. Lal, R. Mondal and D. Verma. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbil. Lett. 182:291-296 https://doi.org/10.1111/j.1574-6968.2000.tb08910.x
  29. Umali-Garcia, M., D.H. Hubbell., M.H. Gaskins., F.B. Dazzo. 1980. Association of Azospirillum with grass roots. Appl. Environ. Microbiol. 39:219-226
  30. Vandana, K., and G. Reeta. 2003. Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol. Res. 158:163-168 https://doi.org/10.1078/0944-5013-00188
  31. Olsen, S.R., and L.E. Sommers. 1982. Phosphorus. p. 403-430. In A.L. Page et al. (ed.), Method of soil analysis, Chemical and microbial properties. American Society of Agronomy, Madison, WI, U.S.A.
  32. Yadav, K.S., and K.R. Dadarwal. 1997. Phosphate solubilization and mobilization through soil microorganisms. p. 293-308. In K.R. Dadarwal, (ed.), Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific Publishers, Jodhpur, India