• Title/Summary/Keyword: glucobrassicin

Search Result 31, Processing Time 0.041 seconds

Metabolic Engineering of Indole Glucosinolates in Chinese Cabbage Plants by Expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1

  • Zang, Yun-Xiang;Lim, Myung-Ho;Park, Beom-Seok;Hong, Seung-Beom;Kim, Doo Hwan
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.231-241
    • /
    • 2008
  • Indole glucosinolates (IG) play important roles in plant defense, plant-insect interactions, and stress responses in plants. In an attempt to metabolically engineer the IG pathway flux in Chinese cabbage, three important Arabidopsis cDNAs, CYP79B2, CYP79B3, and CYP83B1, were introduced into Chinese cabbage by Agrobacterium-mediated transformation. Overexpression of CYP79B3 or CYP83B1 did not affect IG accumulation levels, and overexpression of CYP79B2 or CYP79B3 prevented the transformed callus from being regenerated, displaying the phenotype of indole-3-acetic acid (IAA) overproduction. However, when CYP83B1 was overexpressed together with CYP79B2 and/or CYP79B3, the transformed calli were regenerated into whole plants that accumulated higher levels of glucobrassicin, 4-hydroxy glucobrassicin, and 4-methoxy glucobrassicin than wild-type controls. This result suggests that the flux in Chinese cabbage is predominantly channeled into IAA biosynthesis so that coordinate expression of the two consecutive enzymes is needed to divert the flux into IG biosynthesis. With regard to IG accumulation, overexpression of all three cDNAs was no better than overexpression of the two cDNAs. The content of neoglucobrassicin remained unchanged in all transgenic plants. Although glucobrassicin was most directly affected by overexpression of the transgenes, elevated levels of the parent IG, glucobrassicin, were not always accompanied by increases in 4-hydroxy and 4-methoxy glucobrassicin. However, one transgenic line producing about 8-fold increased glucobrassicin also accumulated at least 2.5 fold more 4-hydroxy and 4-methoxy glucobrassicin. This implies that a large glucobrassicin pool exceeding some threshold level drives the flux into the side chain modification pathway. Aliphatic glucosinolate content was not affected in any of the transgenic plants.

Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1

  • Zang, Yun-Xiang;Kim, Jong-Hoon;Park, Young-Doo;Kim, Doo-Hwan;Hong, Seung-Beom
    • BMB Reports
    • /
    • v.41 no.6
    • /
    • pp.472-478
    • /
    • 2008
  • Three Arabidopsis cDNAs, MAM1, CYP79F1, and CYP83A1, required for aliphatic glucosinolate biosynthesis were introduced into Chinese cabbage by Agrobacterium tumefaciens-mediated transformation. The transgenic lines overexpressing MAM1 or CYP83A1 showed wild-type phenotypes. However, all the lines overexpressing CYP79F1 displayed phenotypes different from wild type with respect to the stem thickness as well as leaf width and shape. Glucosinolate contents of the transgenic plants were compared with those of wild type. In the MAM1 line M1-1, accumulation of aliphatic glucosinolates gluconapin and glucobrassicanapin significantly increased. In the CYP83A1 line A1-1, all the aliphatic glucosinolate levels were increased, and the levels of gluconapin and glucobrassicanapin were elevated by 4.5 and 2 fold, respectively. The three CYP79F1 transgenic lines exhibited dissimilar glucosinolate profiles. The F1-1 line accumulated higher levels of gluconapoleiferin, glucobrassicin, and 4-methoxy glucobrassicin. However, F1-2 and F1-3 lines demonstrated a decrease in the levels of gluconapin and glucobrassicanapin and an increased level of 4-hydroxy glucobrassicin.

Variation of Glucosinolate Contents among Domestic Broccoli (Brassica oleracea L. var. italica) Accessions (국내 브로콜리(Brassica oleracea L. var. italica) 유전자원 내 Glucosinolate 함량 변이)

  • Lee, Jun Gu;Kwak, Jung-Ho;Um, Yeong Cheol;Lee, Sang Gyu;Jang, Yoon-Ah;Choi, Chang Sun
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.743-750
    • /
    • 2012
  • A total of 95 broccoli (Brassica oleracea L. var. italica) accessions were evaluated for the identification of desulfo-glucosinolates and their content variation in the flower head using ultra performance liquid chromatography, to select the potentially functional broccoli breeding lines. The six individual desulfo-glucosinolates, including progoitrin, glucoraphanin, sinigrin, gluconapin, glucobrassicanapin, and glucobrassicin, were commonly identified, based on the chromatogram peak comparison with those of the nine individual glucosinolate standards. The total glucosinolate contents varied from 4.2 to $29.0{\mu}mol{\cdot}g^{-1}$ DW and the glucoraphanin (1.6 to $13.9{\mu}mol{\cdot}g^{-1}$ DW) was confirmed as a major constituent in the total glucosinolate profile among the six identified individual glucosinolate species, whereas the progoitrin, which was only detected in 13 accessions, showed accession-specific variation and negative correlation with glucoraphanin content. It was also revealed that the four major glucosinolates, such as glucobrassicanapin, glucoraphanin, glucobrassicin, and gluconapin, affected major content variation and showed higher positive inter-correlation. These results might be used for the selection of potential breeding materials as functional broccoli germplasm through the further evaluation on the stability and reproducibility of glucosinolate profile depending on environmental factors or cultural managements using the selected accessions.

Variation of Glucosinolate Composition during Seedling and Growth Stages of Brassica rapa L. ssp. pekinensis

  • Hong, Eunyoung;Kim, Gun-Hee
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.730-738
    • /
    • 2014
  • The objective of this study was to evaluate glucosinolate (GSL) profiles and variation of total and individual GSLs concentrations within seedling (0-14 days) and growth stages (0-15 weeks) of Korean Chinese cabbage (Brassica rapa L. ssp. pekinensis). Ten GSLs (progoitrin, glucoraphanin, glucoalyssin, gluconapin, glucobrassicanapin, 4-hydroxyglucobrassin, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin and gluconasturtiin) were identified from Korean Chinese cabbage. In general, total GSL content significantly decreased during seedling (from 92.89 to $35.26{\mu}mol{\cdot}g^{-1}$ DW) and g rowth stages ( from 74.11 to $1.97{\mu}mol{\cdot}g^{-1}$ DW). Gluconapin was the highest in seeds and in the germination period ($73.1{\mu}mol{\cdot}g^{-1}$ DW) and declined gradually from 73 to 15% during seedling stages. The level of the major aliphatic GSLs, gluconapin and progoitrin, tended to decrease sharply, whereas levels of indolic GSLs (4-methoxyglucobrassicin, glucobrassicin) and aromatic GSLs (gluconasturtiin) were found to increase generally at the beginning of growth stages.

Identification and quantification of glucosinolates in rocket salad (Eruca sativa) (Rocket salad(Eruca sativa) 중 glucosinolate 동정 및 정량)

  • Kim, Cho-Rok;Lim, Young-Sil;Lee, Sang-Won;Kim, Sun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • Glucosinolate (GSL) contents were investigated (i) at 1~7 days after sowing (DAS) in seed sprouts and (ii) at 3-7 weeks after sowing for the time-course. Moreover, (iii) They were compared with five different cultivars of rocket salad (Eruca sativa). Seventeen GSLs were separated by HPLC analysis, and 10 GSLs among them were identified as glucoraphanin, sinigrin, glucoalyssin, diglucothiobeinin, glucobrassicanapin, glucoerucin, glucobrassicin, dimeric, 4-mercaptobutyl GSL, 4-methoxy glucobrassicin, gluconasturttin by using LC-APCI-MS analysis, but 7 compounds were not identified. (i) The total GSL content in seed sprouts initially increased up to 3 DAS and then decreased according to their seedling growth. In particular, glucoraphanin known as a strong anti-cancer reagent was found the highest level (5.05 ${\mu}mol/g$ dry wt.) at 3 DAS. The most abundant GSL was glucoerucin ranged from 26.0~49.6 ${\mu}mol/g$ dry wt. (ii) In the time-course, the total GSL contents increased dramatically from 3-week (5.91 ${\mu}mol/g$ dry wt.) to 7-week after sowing (32.2 ${\mu}mol/g$ dry wt.). The major GSLs were glucoraphanin, glucoerucin and 4-methoxy glucobrassicin. (iii) By comparing GSL contents with five different cultivars, the total GSL contents increased from 4-week to 6-week after sowing, regardless of cultivar. In 4-week-old, the order with the total GSL content was "Rucola" > "Rocket Herbs" ${\geqq}$ "Odyssey" > "Takii" > "Herb", but in 6-week-old it is changed as "Takii" > "Herb" > "Odyssey" > "Rucola" > "Rocket Herbs" even there was almost no significantly difference between them.

Effects of different sulfur ion concentration in nutrient solution and light source on glucosinolate contents in kale sprouts (Brassica oleracea var. acephala)

  • Park, Ye-Jin;Chun, Jin-Hyuk;Woo, Hyunnyung;Maruyama-Nakashita, Akiko;Kim, Sun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.261-271
    • /
    • 2017
  • The aim of this study was to investigate the amount of glucosinolates (GSLs) in kale sprouts (Brassica oleracea L. var. acephala) ('TBC') according to different concentrations of sulfur ions in sprout's nutrient solutions (0.0, 0.5, 1.0, and 2.0 mM) and to different light sources [Fluorescent lamp, Red, Blue, and Mix (R+B) LED]. Kale sprouts were cultivated in a growth chamber for 13 days in sulfur solutions. Kale sprouts were treated with fluorescent lamp and LED light sources for 5 days, from eight days after sowing to harvest. Amount of seven types of GSLs (progoitrin, sinigrin, 4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin) were measured in kale sprouts after harvest. The total GSL content was influenced by different sulfur solution concentration, and it was the highest at S 0.5 mM ($172.54{\mu}mol{\cdot}g^{-1}DW$) and the lowest at S 2.0 mM ($163.09{\mu}mol{\cdot}g^{-1}DW$). The GSL content was influenced by different light source, and it was the highest with Red LED ($159.23{\mu}mol{\cdot}g^{-1}DW$) and the lowest with Blue LED ($147.57{\mu}mol{\cdot}g^{-1}DW$). As the sulfur solution concentration increased under all light source, progoitrin and sinigrin contents tended to decrease while glucobrassicin content showed an upward tendency for all of the light sources. The content of glucobrassicin was higher than that of progitrin when treated with sulfur solutions for all LED light sources. Sinigrin, which has excellent anti-cancer effects, showed the highest rate (92.2%) among all the GSLs, under all of the light sources.

Determination of Bioactive Compounds and Anti-cancer Effect from Extracts of Korean Cabbage and Cabbage (배추와 양배추 추출물의 생리활성 물질 및 암세포 증식 억제효과 분석)

  • Hwang, Eun-Sun;Hong, Eun-Young;Kim, Gun-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.2
    • /
    • pp.259-265
    • /
    • 2012
  • In this study, we determined total polyphenol content(TPC) and total flavonoid content(TFC) of extracts from Korean cabbage and cabbage using a spectrophotometric method as well as glucosinolates concentration by HPLC. TPCs of Korean cabbage and cabbage extracts were 308.48 ${\mu}g$ GAE/g dry weight and 344.75 ${\mu}g$ GAE/g dry weight, respectively. TFCs of Korean cabbage and cabbage extracts were 5.33 ${\mu}g$ QE/g dry weight and 5.95 ${\mu}g$ QE/g dry weight, respectively. We found six different glucosinolates, namely progoitrin, glucoalyssin, gluconapin, glucobrassicanapin, glucobrassicin and 4-methoxyglucobrassicin in the Korean cabbage extract. In the cabbage extract, there was four glucosinolates, namely glucoraphanin, sinigrin, glucobrassicin and 4-methoxyglucobrassicin. We determined the cytotoxic effect of Korean cabbage and cabbage extracts in AGS human stomach cancer cells, HepG2 human hepatic cancer cells and LNCaP human prostate cancer cells by MTT assay. Dose-dependent relationships were found between the extract concentrations and cancer cell growth inhibition. The overall results support that both Korean cabbage and cabbage, the major vegetables in Korea, contain bioactive compounds such as polypheol, flavonoids as well as glucosinolates and they may play a positive role in cancer prevention.

Analysis of glucosinolates and their metabolites from napa cabbage (Brassica rapa subsp. Pekinensis) and napa cabbage kimchi using UPLC-MS/MS (UPLC-MS/MS를 이용한 배추와 배추김치의 글루코시놀레이트 및 대사체 분석)

  • Kim, Jaecheol;Park, Hyo Sun;Hwang, Keum Taek;Moon, BoKyung;Kim, Suna
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.587-594
    • /
    • 2020
  • In this study, we analyzed glucosinolates and their metabolites in the inner and outer parts of napa cabbage (NC; Brassica rapa subsp. pekinensis) and napa cabbage kimchi (NKC) using UPLC-ESI-MS/MS. In the extracts from NC and NKC, glucobrassicanapin (m/z 386), glucoalyssin (m/z 450), glucobrassicin (m/z 447), 4-methoxyglucobrassicin (m/z 477), and neoglucobrassicin (m/z 477) were detected using the MS scan mode ([M-H]-), and gluconapin (m/z 372→97), progoitrin (m/z 388→97), glucoiberin (m/z 422→97), 4-methoxyglucobrassicin (m/z 477→97), and neoglucobrassicin (m/z 477→447) were detected using the MS/MS MRM mode ([M-H]-). Ascorbigen (m/z 306→130) and indole-3-carboxaldehyde (I3A; m/z 146→118), which were metabolites of glucobrassicins, were detected using the MS/MS MRM ([M+H]+) mode. The peak intensities of ascorbigen in the extract from the inner and outer parts of NC were significantly higher than those of the NKC extract (p<0.05); however, there was no significant difference in I3A peak intensity between the NC and NKC extracts.

Identification of glucosinolate-associated QTLs in cabbage (Brassica oleracea L. var. capitata)

  • Oh, Sang Heon;Choi, Su Ryun;Pang, Wenxing;Rameneni, Jana Jeevan;Yi, So Young;Kim, Man-Sun;Im, Su Bin;Lim, Yong Pyo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Glucosinolates are one of the important plant secondary metabolites that are produced mainly in Brassicaceae plants. The compounds are primarily involved in defense responses to biotic and abiotic resistance in plants and play important biological roles during plant growth and development. In this study, the glucosinolate profiles in leaves of two different Brassica oleracea populations were compared using high-performance liquid chromatography (HPLC). The nine major glucosinolates compounds in cabbage leaves were identified as belonging to the aliphatic and indolic groups. Among them, sinigrin, which belongs to the aliphatic group, was recorded to be 41% whereas glucobrassicin and 4-methoxyglucobrassicin, which belong to the indolic group, were recorded to be 53.8%. In addition, we performed a genetic analysis to identify regions of the genome regulating glucosinolates biosynthesis in the $F_3$ population of Brassica oleracea. A total of 9 glucosinolates were used for the quantitative trait locus (QTL) analysis. Out of 9, a total of 3 QTLs were identified and they were associated with sinigrin, glucobrassicin, and 4-methoxyglucobrassicin synthesis located in Chromosome 1 and Chromosome 8, respectively. The results of this study will provide valuable information for the breeding of cabbage containing high glucosinolate content, and our next target is to develop component-specific and tightly linked markers for various glucosinolates.

Effect of Developmental Stages on Glucosinolate Contents in Kale (Brassica oleracea var. acephala) (생장단계에 따른 케일 내 글루코시놀레이트 함량)

  • Lee, Heon-Hak;Yang, Si-Chang;Lee, Min-Ki;Ryu, Dong-Ki;Park, Suhyoung;Chung, Sun-Ok;Park, Sang Un;Lim, Yong-Pyo;Kim, Sun-Ju
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The aim of this study was to investigate the amounts of glucosinolates (GSL) in kale at various development stages. Kale varieties 'Manchoo Collard' and 'TBC' were cultivated from 20 February 2012 to 3 July 2013 in the greenhouse at Chungnam National University. During the cultivation periods, samples were harvested at 35, 63, 91, 105, 119, and 133 days after sowing (DAS) and the amount of GSL quantified by HPLC. Ten types of GSL (progoitrin, sinigrin, glucoalyssin, gluconapin, glucoiberverin, 4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin) were observed in 'TBC', whereas nine types of GSL (the same as above, except glucoiberverin) were identified in 'Manchoo Collard'. The amount of total GSL in 'Manchoo Collard' was comparatively higher at 133 DAS (mean $8.64{\mu}mol{\cdot}g^{-1}$) and lower at 35 DAS ($1.16{\mu}mol{\cdot}g^{-1}$ dry weight, DW) of cultivation. In the case of 'TBC', the amount of GSL was higher at 91 DAS (mean $13.41{\mu}mol{\cdot}g^{-1}$) and lower at 35 DAS ($0.31{\mu}mol{\cdot}g^{-1}$ dry weight, DW). Sinigrin was the most abundant GSL (57% of total GSL) in 'Manchoo Collard' at 133 DAS and was also highest (44%) in 'TBC' at 91 DAS. Together, progoitrin, sinigrin, glucobrassicin, and gluconasturtiin, the precursor of crambene, allylisothiocyanate, indol-3-cabinol, and phenethylisothiocyanate accounted for 94 and 78% of GSL in 'Manchoo Collard' and 'TBC', respectively. Our results demonstrate that the amounts of GSL, which have potential anti-carcinogenic activity, change during development in kale.