Browse > Article
http://dx.doi.org/10.7235/hort.2014.14041

Variation of Glucosinolate Composition during Seedling and Growth Stages of Brassica rapa L. ssp. pekinensis  

Hong, Eunyoung (Department of Food and Nutrition, Duksung Women's University)
Kim, Gun-Hee (Department of Food and Nutrition, Duksung Women's University)
Publication Information
Horticultural Science & Technology / v.32, no.5, 2014 , pp. 730-738 More about this Journal
Abstract
The objective of this study was to evaluate glucosinolate (GSL) profiles and variation of total and individual GSLs concentrations within seedling (0-14 days) and growth stages (0-15 weeks) of Korean Chinese cabbage (Brassica rapa L. ssp. pekinensis). Ten GSLs (progoitrin, glucoraphanin, glucoalyssin, gluconapin, glucobrassicanapin, 4-hydroxyglucobrassin, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin and gluconasturtiin) were identified from Korean Chinese cabbage. In general, total GSL content significantly decreased during seedling (from 92.89 to $35.26{\mu}mol{\cdot}g^{-1}$ DW) and g rowth stages ( from 74.11 to $1.97{\mu}mol{\cdot}g^{-1}$ DW). Gluconapin was the highest in seeds and in the germination period ($73.1{\mu}mol{\cdot}g^{-1}$ DW) and declined gradually from 73 to 15% during seedling stages. The level of the major aliphatic GSLs, gluconapin and progoitrin, tended to decrease sharply, whereas levels of indolic GSLs (4-methoxyglucobrassicin, glucobrassicin) and aromatic GSLs (gluconasturtiin) were found to increase generally at the beginning of growth stages.
Keywords
Chinese cabbage; principal component analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lein, K.A. 1972. Genetical and physiological studies on the formation of glucosinolates in rape seeds: Localisation of the main site of glucosinolate biosynthesis by grafting experiments. Z Pflanzenphysiol 67:333-342.   DOI
2 Mattaus, B. and H. Luftmann. 2000. Glucosinolates in members of the family Brassicaceae: Separation and identification by LC/ESI-MS-MS. J. Agr. Food Chem. 48:2234-2239.   DOI
3 McGregor, D.I. 1998. Glucosinolate content of developing rapeseed (Brassica napus L "Midas") seedlings. Can. J. Plant Sci. 68:367-380.
4 Mithen, R.F., M. Dekker, R. Verkerk, S. Rabot, and T. Johnson lan. 2000. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods (review). J. Sci. Food Agr. 80:967-984.   DOI   ScienceOn
5 Paxman, P.J. and R. Hill. 1974. Thiocyanate content of Kale. J. Sci. Food Agr. 25:323-328.   DOI
6 Pereira, F.M.V., E. Rosa, J.W. Fahey, K.K. Stephenson, R. Carvalho, and A. Aires. 2002. Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea Var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J. Agr. Food Chem. 50: 6239-6244.   DOI   ScienceOn
7 Porter, A.J.R., A.M. Morton, G. Kiddle, K.J. Doughty, and R.M. Wallsgrove. 1991. Variation in the glucosinolate content of oilseed rape (Brassica napus L.), I. Effects of leaf age and position. Ann. Appl. Biol. 118:461-467.   DOI
8 Renwick, J.A.A. 2001. Variable diets and changing taste in plant insect relationships. J. Chem. Ecol. 27:1063-1076.   DOI
9 Rosa, E.A.S. and R. Heaney. 1996. Seasonal variation in protein, mineral and glucosinolate composition of Portuguese cabbages and kale. Anim. Feed Sci. Tech. 57:111-127.   DOI   ScienceOn
10 Sarwar, M. and J.A. Kirkegaard. 1998. Biofumigation potential of Brassicas. II. Effect of environment and ontogeny of glucosinolate production and implications for screening. Plant Soil. 201:91-101.   DOI
11 Vallejo, F., F.A. Tomas-Barveran, and C. Carcia-Viguera. 2002. Potential bioactive compounds in health promotion from broccoli cultivars grown in Spain. J. Sci. Food Agr. 82:1293-1297.   DOI
12 Brudenell, A.J.P., H. Griffiths, J.T. Rossiter, and D.A. Baker. 1999. The phloem mobility of glucosinolates. J. Exp. Bot. 50:745-756.   DOI
13 Bergman, F. 1970. The glucosinolate biosynthesis during the course of ontogenesis of Sinapis alba L. Z. Pflanzenphysiol. 62:362-375.
14 Barbieri, G., R. Pernica, A. Maggio, S.D. Pascale, and V. Fogliano. 2008. Glucosinolates profile of Brassica rapa L. Subsp. Sylvestris L. Janch. var. esculenta Hort. Food Chem. 107:1687-1691.   DOI   ScienceOn
15 Bennett, R.N., J. Ludwig-Muller, G. Kiddle, W. Hilgenberg, and R.M. Wallsgrove. 1995. Developmental regulation of aldoxime formation in seedlings and mature plants of Chinese cabbage (Brassica campestris ssp. pekinensis) and oilseed rape (Brassica napus): Glucosinolate and IAA biosynthetic enzymes. Planta. 196:239-244.
16 Bradshaw, J.E., R.K. Geaney, W.H. Macfarlane Smith, S. Gowers, D.J. Gemmell and G.R. Fenwick. 1984. The glucosinolate content of some fodder Brassicas. J. Sci. Food Agr. 35:977-981.   DOI
17 Cartea, M.E., P. Velasco, S. Obregon, G. Padilla, and A. De Haro. 2008. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403-410.   DOI   ScienceOn
18 Charron, C.S., A.M. Saxton, and E.S. Carl. 2005. Relationship of climate and genotype to seasonal variation in the glucosinolatemyrosinase system I. Glucosinolate content in ten cultivars of Brassica oleracea grown in fall and spring seasons. J. Sci. Food Agr. 85:671-681.   DOI   ScienceOn
19 Verhoeven, D.T., H. Verhagen, R.A. Goldbohm, P.A. van den Brandt, and G.A. van Poppel. 1997. A review of mechanisms underlying anti carcinogenecity by Brassica vegetables. Chem-Biol. Interact. 103:79-129.   DOI   ScienceOn
20 West, L.G., K.A. Meyer, B.A. Balch, F.J. Rossi, M.R. Schultz, and G.W. Haas. 2004. Glucoraphanin and 4-hydroxyglucobrassicin contents in seeds of 59 cultivars of broccoli, raab, kohlrabi, radish, cauliflower, brussels sprouts, kale, and cabbage. J. Agr. Food Chem. 52:916-926.   DOI   ScienceOn
21 Chew, F.S. 1988. Biological effects of glucosinolates, p. 155-181. In: H.G. Cutler (ed.). Biologically active natural products: Potential use in agriculture. American Chemical Society, Washington, D.C.
22 Clossais-Besnard, N. and F. Larher. 1991. Physiological role of glucosinolates in Brassica napus. Concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle. J. Sci. Food Agr. 56:25-38.   DOI
23 Chen, S. and E. Andreasson. 2001. Update on glucosinolate metabolism and transport. Plant Physiol. Bioch. 39:743-758.   DOI   ScienceOn
24 Chu, Y.F., J. Sun, X. Wu, and R.H. Liu. 2002. Antioxidants and antiproliferative activities of common vegetables. J. Agr. Food Chem. 50:6910-6916.   DOI   ScienceOn
25 Ciska, E., B. Martyniak-Przybyszewska, and H. Kozlowska. 2000. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J. Agr. Food Chem. 48:2862-2867.   DOI   ScienceOn
26 Cohen, J.H., A.R. Kristal, and J.L. Stanford. 2000. Fruit and vegetable intakes and prostate cancer risk. J. Natl. Cancer I. 92:61-68.   DOI   ScienceOn
27 De March, G., D.I. McGregor, and G. Seguin-Shwartz. 1989. Glucosinolate content of maturing pods and seeds of high and low glucosinolate summer rape. Can. J. Plant Sci. 69:929-932.   DOI
28 Fahey, J.W., A.T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51.   DOI   ScienceOn
29 Fenwick, G.R., R.K. Heaney, and W.J. Mullin. 1983b. Glucosinolates and their breakdown products in food and food plants. CRC Cr. Rev. Food Sci. 18:123-201.
30 Fenwick, G.R., N.M. Griffiths, and R.K. Heaney. 1983a. Bitterness in Brussels sprouts (Brassica oleracea L. var. gemmifera): The role of glucosinolates and their breakdown products. J. Sci. Food Agric. 34:73-80   DOI
31 Halkier, B.A. and J. Gershenzon. 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57:303-333.   DOI   ScienceOn
32 Fieldsend, J. and G.F.J. Milfor. 1994. Changes in glucosinolates during crop development in single- and double-low genotypes of winter oilseed rape (Brassica napus): I. Production and distribution in vegetative tissues and developing pods during development and potential role in the recycling of sulphur within the crop. Ann. Appl. Biol. 124:531-542.   DOI
33 Grubb, C.D. and S. Abel. 2006. Glucosinolates metabolism and its control. Trends. Plant. Sci. 11:89-100.
34 Halkier, B.A. and L. Du. 1997. The biosynthesis of glucosinolates. Trends. Plant Sci. 2:425-431.   DOI   ScienceOn
35 Jeffery, E.H., A.F. Brown, A.C. Kurilich, A.S. Keek, N. Matusheski, B.P. Klein, and J.A. Juvik. 2003. Variation in content of bioactive components in broccoli. J. Food Comp. Anal. 16:323-330.   DOI   ScienceOn
36 Kushad, M.M., A.F. Brown, A.C. Kurilich, J.A. Juvik, B.P. Klein, M.A. Wallig, and E.H. Jeffery. 1999. Variation of glucosinolates in vegetable crops of Brassica oleracea. J. Agr. Food Chem. 47:1541-1548.   DOI   ScienceOn
37 Lee, C.H. 1997. Lactic acid fermented foods and their benefits in Asia. Food Control. 8:259-269.   DOI   ScienceOn
38 Podsedek, A. 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT- Food Sci. Technol. 40:1-11.   DOI   ScienceOn