• Title/Summary/Keyword: globally stable

Search Result 104, Processing Time 0.028 seconds

Decentralized Control for Multimachine Power Systems, with Nonlinear Interconnections and Disturbances

  • Jung Kyu-Il;Kim Kwang-Youn;Yoon Tae-Woong;Jang Gilsoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.270-277
    • /
    • 2005
  • In this paper, a decentralized control problem is considered for multimachine power systems with nonlinear interconnections and disturbances. A direct feedback linearization compensator is employed to cancel most of the nonlinearities, and then a backstepping procedure is applied to deal with the interconnections and to reduce the effects of a disturbance that does not satisfy the matching condition. In this procedure, the disturbance is handled by using a smooth approximation of the signum function. Practical stability is achieved under the assumption that the infinite norm of the disturbance is known. However, even in the case where the infinite norm of the disturbance is not known precisely, the proposed control system still guarantees $L_2$ stability. Furthermore, the origin is globally uniformly asymptotically stable in the absence of the disturbance. A three-machine power system is considered as an application example.

Global stabilization of three-dimensional flexible marine risers by boundary control

  • Do, K.D.
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.171-194
    • /
    • 2011
  • A method to design a boundary controller for global stabilization of three-dimensional nonlinear dynamics of flexible marine risers is presented in this paper. Equations of motion of the risers are first developed in a vector form. The boundary controller at the top end of the risers is then designed based on Lyapunov's direct method. Proof of existence and uniqueness of the solutions of the closed loop control system is carried out by using the Galerkin approximation method. It is shown that when there are no environmental disturbances, the proposed boundary controller is able to force the riser to be globally exponentially stable at its equilibrium position. When there are environmental disturbances, the riser is stabilized in the neighborhood of its equilibrium position by the proposed boundary controller.

Collision-free tool orientation optimization in five-axis machining of bladed disk

  • Chen, Li;Xu, Ke;Tang, Kai
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.197-205
    • /
    • 2015
  • Bladed disk (BLISK) is a vital part in jet engines with a complicated shape which is exclusively machined on a five-axis machine and requires high accuracy of machining. Poor quality of tool orientation (e.g., false tool positioning and unsmooth tool orientation transition) during the five-axis machining may cause collision and machine vibration, which will debase the machining quality and in the worst case sabotage the BLISK. This paper presents a reference plane based algorithm to generate a set of smoothly aligned tool orientations along a tool path. The proposed method guarantees that no collision would occur anywhere along the tool path, and the overall smoothness is globally optimized. A preliminary simulation verification of the proposed algorithm is conducted on a BLISK model and the tool orientation generated is found to be stable, smooth, and well-formed.

Stabilization of discrete-time semilinear heat processes by boundary inputs

  • Koay, S.P.;Sano, H.;Ito, K.;Kunimatsu, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1284-1288
    • /
    • 1990
  • In this paper, we are going to study the stabilization of the semilinear heat equation with inhomogenous boundary conditions, whose solutions are not (in general) stable. Here, we use the discrete-time feedback inputs through the boundary of geometric domain to the semilinear system under some additional conditions and assumptions. It is shown that under these conditions, the stabilization can be realized by applying pole assignment argument to the principal linear part of the system and that the solutions exist globally in discrete-time t without any finite escape time.

  • PDF

A method of nonlinear optimal regulator using a Liapunov-like function

  • Kawabata, Hiroaki;Shirao, Yoshiaki;Nagahara, Toshikuni;Inagaki, Yoshio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1060-1065
    • /
    • 1990
  • In general it is difficult to determine a Liapunov function for a given asymptotically stable, nonlinear differential equations system. But, in the system with control inputs, it is feasible to make a given positive function, except for a small area, globally satisfy the conditions of the Liapunov function for the system. We call such a positive function a Liapunov-like function, and propose a method of nonlinear optimal regulator using this Liapunov-like function. We also use the periodic Liapuitov-like friction that suits the system whose equilibrium points exist periodically. The relationship between the Liapunov function and cost function which this nonlinear regulator minimizes is considered using inverse optimal method.

  • PDF

Sliding Mode Control for Robust Stabilization of Uncertain Input-Delay Systems

  • Roh, Young-Hoon;Oh, Jun-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.98-103
    • /
    • 2000
  • This paper is concerned with a delay-dependent sliding mode scheme for the robust stabilization of input-delay systems with bounded unknown uncertainties. A sliding surface based ona predictor is proposed to minimize the effect of the input delay. Then, a robust control law is derived to ensure the existence of a sliding mode on the surface. In input-delay systems, uncertainties given during te delayed time are not directly controlled by the switching control because of causality prolem of them. They can influence the stability of the system in the sliding mode. Hence, a delay-dependent stability analysis for reduced order dynamics is employed to estimate maximum delay bound such that the system is globally asymptotically stable in the sliding mode. A numerical example is given to illustrate the design procedure.

  • PDF

Design of an Adaptive Fuzzy Logic Controller using Sliding Mode Scheme

  • Kwak, Seong-Woo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.577-582
    • /
    • 1999
  • Using a sole input variable simplifies the design process for the fuzzy logic controller(FLC). This is called single-input fuzzy logic controller(SFLC). However it is still deficient in the capability of adapting to the varying operating conditions. We here design a single-input adaptive fuzzy logic controller(AFLC) using a switching function of the sliding mode control. The AFLC can directly incorporate linguistic fuzzy control rules into the controller. Hence some parameters of the membership functions characterizing the linguistic terms of the fuzzy rules can be adjusted by an adaptive law. In the proposed AFLC center values of fuzzy sets are directly adjusted by a fuzzy logic system. We prove that 1) its closed-loop system is globally stable in the sense that all signals involved are bounded and 2)its tracking error converges to zero asymptotically. We perform computer simulation using a nonlinear plant.

  • PDF

Intelligent Digital Controller Using Digital Redesign

  • Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.187-193
    • /
    • 2003
  • In this paper, a systematic design method of the intelligent PAM fuzzy controller for nonlinear systems using the efficient tools-Linear Matrix Inequality and the intelligent digital redesign is proposed. In order to digitally control the nonlinear systems, the TS fuzzy model is used for fuzzy modeling of the given nonlinear system. The convex representation technique also can be utilized for obtaining TS fuzzy models. First, the analog fuzzy-model-based controller is designed such that the closed-loop system is globally asymptotically stable in the sense of Lyapunov stability criterion. The simulation results strongly convince us that the proposed method has great potential in the application to the industry.

Stabilizing Control Law of Underactuateted Spacecraft (작동기 수가 부족한 위성체의 자세안정화기법)

  • 김성필;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.102-102
    • /
    • 2000
  • In this paper, attitude control laws are proposed for an underactuated spacecraft. The stabilization problem of the complete system including the kinematics as well as the dynamics of the spacecraft is addressed. The quaternion parameterization is used. The key idea is that the angular velocity of a uncontrolled axis is first regulated and then, the other states are regulated. Based on numerical simulations, it is conjectured that the closed-loop nonlinear system of a spacecraft with the proposed control laws is globally asymptotically stable. The control law for the stabilization problem around the origin as well as the command following problem are proposed. The numerical examples indicate that the stabilization of an underactuated asymmetric spacecraft can be achieved successfully.

  • PDF

Adaptive Cutting force Control of 2Axes (절삭 공정의 2축 적응제어)

  • 조광섭;우중원;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.653-657
    • /
    • 1996
  • This paper presents adaptive cutting force control in milling process using indirect cutting force measurement. The cutting forces in X, Y, and Z axes are measured indirectly from the sensing current of the feed-drive servo motor. After modelling the feed-drive system of a horizontal machining center, the relation between the cutting force and the servo motor current is analyzed. The pulsating milling forces are measured from the sensing current within the bandwidth of the servo. It is shown that indirect cutting farce measurement can be used in adaptive cutting force control. The adaptive control scheme which is globally convergent and stable is attached to a commercial CNC machining center. Cutting experiments on end milling are performed for diagonal cutting.

  • PDF