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Stabilization of Discrete-time Semilinear Heat Processes by Boundary Inputs

1 S.P.Koay, { H.Sano,
1t K.Ito, and  N.Kunimatsu

Abstract

In this paper, we are going to study the stabiliza-
tion of the semilinear heat equation with inhomogenous
bow.dary conditions, whose solutions are not (in gen-
eral) stable. Here, we use the discrete-time feedback
inputs through the boundary of geometric domain to
the semilinear system under some additional conditions
and assumptions. It is shown that under these condi-
tions, the stabilization can be realized by applying pole
assignment argument to the principal linear part of the
system and that the solutions exist globally in discrete-
time t without any finite escape time.

1. Introduction

Remarkable advances in microprocessor technology
have led to increasing interest in discrete-time control
systems. Recently, several studies have appeared on the
approach to the discrete-time formulation of systems of
distributed parameter and their control.

In [1]. they discussed an abstract approximation
framework for linear quadratic regulator problems for
systems whose state are described by a linear semigroup
of operators on a Hilbert space. A design method of a
digital PI-Controller was presented by [2] within the
same framework. The discrete observability of the heat
ecuation was investigated in [3].

In the present paper, we treat the stabilization prob-
iem of semilinear heat equations by a certain type of dis-
crete boundary control, meanwhile the continous time
boundary stabilization was investigated in details by [6]
for the linear parabolic equations.

We provide a brief outline of the paper:

In Sec. 2 and 3, the equation of a control system is
described, which is associated with an inhomogenous
boundary (control) condition. By the assumption of
the piecewise constant control and by changing of vari-
ables of state, we rewrite the system equation to the
new one with the homogenous boundary condition in
each sampling pericd 7, which leads us to the iterative
formula of discretes state of the syste: . In Sec. 4, we
apply the pole assignment argument to the principal
linear part of the discrete system and then we prove
that the semilinear heat process is stabilizable by using
the contractior mapping principle. In Sec. 5, several
examples are given with a different kind of nonlinearity.

2. System Description

2-1 Continous-time System
We consider the semilinear heat equation

dw(s, = B(a(z)2wlnz)
(02) L ALZET) | futsne))

wherez € (0,1),s >0, and f(w(s,z))is nonlinear,

with inhomogenous boundary conditions

(2.2a)

w(s,0) =0, w(s,1)=1v(s) (boundary control)

(2.1)

and initial condition
(2.20) 0(0,2) = p(z)
The state space is considered to be L,(0,1) (denoted

by H). We make the assumptions on a(-),v(-)
() and f(-) as follows:

a(-) € H'(0,1) (Sobolev space of order 1),
a(r)>a>0 for ze€]l0,1),
’U(} € LQ(0,00),

(2.3)
¢() e H,
f+H — H is Lipschitz continuous in  w
with  f(0) = 0.
We set a variable as follows:
(2.4) y(s,2) = wls, z) — R(z)v(s),

where R(z) = z, which enables us to transform the sys-
tem with the inhomogenous boundary condition, (2.1)-
(2.2), into the system with homogenous boundary con-
dition. After this transformation, it is clear that the
system becomes:

(2.5)
By(s,z) _ B(alz)2E=)  ga(z)
Os - dz + Oz u(s)
+ Fluls,2) + Riap(e) - )24,
(2.6) ¥(s,0) =0 and y(s,1)=0,.

(homogenous boundary condition)

(27) ¥(0,2) = w(0, &) = R(z)(0) = plz) — R{z)w(0).
We define an operator A as follows:

A=0(ad()), A:D(AYCH — H,
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where the domain D(A) of the operator A is H3(0,1)N
H?(0,1) and 8 is a differential operator on H(0,1).
The operator A is proved to be densely defined, self-
adjoint and satisfies

(2.8) < Aw,w >< w|lw]*, w e D(A)

for some negative w, where < -, > denotes the inner
product in H.

Furthermore it has compact resolvent, and therefore
it has the point spectrum consisting of a sequence of
eigenvalues A; satisfying

02> A1 2 A, Aj— —oc0 as 1 — 00.
Moreover, it can be shown that A is the infinitesimal
generator of an analytic semigroup of contractions {T'(s);
s 2 0} on H with

IT(s)]l <e¥® for s2>0.
2-2 Discrete-time System

In continous-time control system, the feedback con-
trol is supposed to be continous in time, but when the
feedback control input is generated by computer out-
puts, we can regard v(s) as discrete (in time) signals
added to the control system.

For the discrete-time feedback input

(2.9) v(s) = u(t) for sé€[tr,(t+ 1)7),
+=0,1,2,. ..

which we call a piecewise constant control, we define
the discrete states as follows:

(2.10)
f(tr) = lim w(s,-) for t=1,2,...
a—tT -0

and 8(0) = .

From the above assumptions and definitions, it re-
veals that y(s) = y(s,-) satisfies

(2.11) y(s) =0(ady(s)) + au(t)
+ f(y(s)) + Ru(?),
(212)  y( =0, y(s)h =0
for s € {tr,(t +1)7)
and
(2.13) y(tr) = 0(¢7) — Ru(t).

3. Analysis of Discrete-time System

From (2.4}, (2.9) and (2.10), it follows that

(3.1) Ot + 1)) = lim
s—(t+1)7~0

u(s) + Ru(t).
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On the other hand, by making use of the variation of
constant formula, we have

(3.2)
y(s) =T(s — tr)y(tr) +/ T(s ~ p)da - u(t)dp

tr

+f " T(s - p)f(u(p) + Ru(®))dp
for s€tr,(t+1)7).

Passing the limit of s to (¢ + 1)7 in both sides of
equation (3.2), we get the following equation:

(3.3)
6((t + 1)7) =T(r){0(t7) — Ru(t)} + Ru(t)

(t+1)r
+ / T((t+1)r —p)da - ult)dp
t

r

(t+1)r
+ / (¢ + 1)7 — p) f(w(p))dp.
1

r

If we can assume, in addition to {2.3), that
(3.4)

(t+1)7 (t+1)r
[ s [ Toie

T tT

and

(3.5) [ £C6Cm DI < afibier )™

(3n>1 and 3a>»0)

then we have the iterative discrete-time system of the
form:

(3.6)
8((t + 1)7) =T(7)8(t7) + [I — T(r)]Ru(t)

(t+1)r
+/ T((t+ 1)7 = p)da - u(tjdp
'

>

(t+1)r
+/ Tt + 1)yr —p) f(6(i7))dp.
t

r

From the definition of the operator A4, it is easy to
find that its inverse exists and

(3.7) ] 1
- 5f0 E(I_ry)d” ff T(}T)d“
A Z(E) == 1 3
0 fO a_(ﬁ‘)dg
1 3
_/‘1 fz Zflﬁd”fo ;ﬁﬁda
1
€ o a(lmdﬂ
(Vz(-) e H 0 < £ <),

(z)dz

z(z)de

Since A7 lexists, and A and T are commutative,it fol-
lows, from (3.6), that

(3.8)
8((t 4+ 1)r) =T(m)8(t7) + {T(r) ~ JAT f(8(t7))
+ [T~ T(H(RC) = A7 0a) - uit).



4. Stabilization by Pole Assignment Argument

4-1 Pole Assignment Argument for Linear Sys-
tem

The linear operator A is, as mentioned before, a self-
adjoint operator with compact resolvent. The spec-
trum is bounded upwards, and there exists a sequence
{An,n = 1,2,...} of eigenvalues with corresponding
orthonormal eigenfunctions ¢, such that

Adn = )\nén

where 0> Ay > Xy 2 ..., lmpme An = —0C.
TFov every 6 in H | there is a unique representation
such that

n=12,...,

(41) g = Zencﬁna 0, =< €v¢n >
n=1

Then, the semigroup T(s) is given by

T(s) = e0ug, (V€ H).

n=1

(4.2)

Here, consider the control system

(4.3) 8t + 1) =T6(t) + bu(t)

(state equation},

(4.3b)
y(t) =< g,6(t) >
= C6(t) (output equation)

where b {= [T(7) — I)(R(-) — A~ %8a) in (3.9)) € H ,
T (=T(7) in (3.9)) and g € H is a sensor influence
function.

In order to stabilize the si stem (4.3), we will contruct
a N-dimensional dynamic compensator of the form

{

where E, F and G are matrices to be determined. Con-
sider the product space H x CV with the inner product

u(t) = FE()

(4.4) -
§(t+1) = BE(t) + Gy(t),€(t) € O,

< (1,02 >pxeny =< 61,62 > +(&1,E)N
for (i=(6,&)eHxCY, i=12...,

where (-, )~ is the usual inner product of the euclidean
space C™. Then the closed loop system constituted by
(4.3)-(4.4) is represented by the evolution equation

{4.5) Ct+1) = B(z), ((0) = ¢,
where
T F
b= [GC E ] ‘
Ct) = [fﬁ; }
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Our goal is to determine the matrices E,F and G, and

the dimension N such that for given 0 < o < 1, the

solution ((t) of (4.5) satisfies

(4.6) NN xer Mo iCollpxer,
t=0,1,... ,

for some M > 1. The procedure is in four steps.
Stepl Fix any n > 0. Take an positive integer p such
that
At :
eMNT < g —n forany 1> p,

where ¢*'" is the eigenvalue of T. Since
1>€>‘1T26A2T2"', lim 5*17_,0)
11— o0

such a number p always exists.
Step2 For each & € N, define the matrices

eMT 0
e/\;'r o
Tk — c Cl\xk./
0 €T |
<bypr >
bk — < Clcxl
< bv‘rok >

Cr=[<g.1>... < g, >] €CV,
where ¢; is the eigenvector of A (consequently, of T'(7))
corresponding to A; (or ¢M7)

Before going to the next step, we need an assumption:
Assumption 4.1. For p taken in Stepl, the system
(Ty, by, Cp) is controllable and observable.

Step3 Find matrices F}, and G, such that

maz|o(T, + b, Fp)| < o — 1,

maz|o(Ty + GpCy)| < o — 7,
where o(-) denotes the spectrum of an operator. By
virtue of Assumption4.1, one can employ, for example,
the method of pole assignment to contruct F}, and G,
satisfying (4.7).

Step4 Determine the coefficient matrices F, G and
E of the N-dimensional compensator (4.4) as

F = [Fp 0] c ClxN’

GP Nx1
C

[0]6 ’

E=Ty+byF+GCyeCV™M.
Lemma 1. Forany 0 < o < 1, if Assumption 4.1 is
satisfied, there is a number N such that the state ((t)
of closed loop system (4.5) in H xC" with the matrices
of (4.8) is estimated by (4.6). Consequently, we have
(4.9) 8t + 1)) < ollf(tr)), t=0,1,...
Proof: Omitted

4-2 Stabilization of Semilinear System

(4.7)

(4.8) G

Lemma 2.
Let v < 1,
0.1.2,...

1 <nandab > 0. Ifasequence {y;:t =
} of positive real numbers satisfies

Ve < vy abyy



and

1
0 <y < (

)7,
then for any positive m; with 0 < ¥+ m < 1, it holds
that

(4.10)

ve <My +m)y (3M=>1)

for some M > 1 independent of t.

Proof:
Consider the iterative system:

(4.11) Zyp1 = y2ze + abzy

where n > 1,
0,1,2,...

vy<1, ab>0and z > 0 fort =
,and the initial value is

)

If we set
flz) = yze + abzy,

then we get

flz) <z for 0<z < (AoXyer,

ab
From the initial value condition, then z; is a monoto-
nously decreasing sequence. It is also bounded down-
wards. Hence it is a convergent sequence and if we put
z as its limit | then z = f(z) .Thus z = 0, and from the
above we get the result that

(4.12) O0< 2z < (l

— 7.1
b’))"—l =z —0 as ¢~ oo

Here, we set z, = (—m’—ﬁ-‘—:—o and zq satisfies the con-

dition z5 < (1—;—})"_1:7 From (4.11),we have

(4.13)
Tpay = —— ¥
T )iz
0ed
= + vz}
Y+m Tt
(where v = ab(y + 7)™ 0
and
(4.14)
T -1
Ty — Tiay = T +W + 7z ).
= — bazy”
"‘*‘U (m t h
Since z*"! — 0 as t — oo, there is an N' large

enough such that for any ¢ Z N,

Ty < T

(4£.13)
Therefore, z, decreases monotonously.  Moreover,
since z, is a positive value, for arbitrary i, the sequence
is bounded downwards. Hence, it is a convergent se-

quence and we can set

(4.16) tl_iglc:c, = z(< o0).
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Passing the limit of t to oo in both sides of equation
(4.14),we get

__
Y+m

(4.17) z =>mz=0,

and thus z = 0, which implies that there exists an N"
large enough such that for t > N
(4.18) z, <1,

and then from (4.13), we get

(4.19) 20y S (v +m) Mz
Therefore,
3M>1 st 2 S My +m)tiz
for all t.

For the system

yee1 < vy + ady]

(n>1, v<1 and ab>0),

we set that zp = yg and get the inequality

T2
<My +m) o
for t=1,2....

Proposition 3.
If the initial data ¢ in (2.2
of radius § in H such that

lell <6

= {

b) is restricted to the ball

(4.20)
(1—-o+4 771)a
a1l + oMty )

p

then there is a constant M > 1 with the following prop-
erty. The norm of the states in equation (3.8) is esti-
mated as

l6((t + D7)l < Mo ]

for t=0,1,2,...,wherec—m <1,
in (2.3), A, is the first eigenvalue of 4 7
periods, and n and o stand for tie characteristics of
nonlirearity in (3.5).

G is a constant
is the sampling

Proof: We can get the result directly by applying
Lemma 1 and Lemma 2, and the procf is omitted here.

5. Examples

5-1 The case of f(w(s,z)) =w(s.z] sin{w(s,z)}
The system is governed by

(5.11)
Du(s,z) _ dalx)®2=hy
oe - = s +w(s, a) sin(wis, 1))

where z € (0,1) and ¢ > " .and the boundary and initial
conditions are same as (2.2a) and (2.2b). By applving
the arguments in Sec.2 and Sec.3, we get the following
equation:



(5.12)
O((t + 1)r) = T(1)8(t7) + [T(r) — IJAT16(t7) - sin(6(tT))

+[I = T(r){R — A7 8a) - u(t).

Using the pole assignment argument and the esti-
mate of [|§(¢7) - sin(8(t7))|| < [|6(t7)||* ,we obtain the
following inequality:

(5.13)
et + D7) < (o = m)l6(er)]
+ {1+ NTAT -6
< (o = m)[16(t7)]

() o)

Here, if the condition of Proposition 3 is satisfied, we
can see that the system is stablized asymptotically by
the boundary input.

5-2 The case of f(w(s,z)) = w?(s, )

Although this system doesn’t statisfy the condition
of assumption (3.5), the asvmptotic stability is still as-
sured by the initial condition w(0) subjected to the re-
striction given by (4.20) .

The following equation is obtained by going through
the Sec.2 and Sec.3.

(5.21)
O((t + 1)7) = T(7){6(z7) — Ru(t)} + Ru(t)

(t+1)r
+ / {(t +

(t4+1)7
[ T R
= T(=)8(tr) + [T(7) ~ ITAT16%(t7)
+ [ =T()(R - A7 da) - ul2).
By applving the pole assignment argumen: and tak-
ing norms in hoth sides, we get

190+ 1)l <o — m)IBGn)] + [T(7) — I
(5.22) AT )
Here, from (3.7) , we know that,

147162 (r)| = | / T Ci(0)8(t7)daf + | / Ca(2)6 (t7)dz]

)7 — p)da - u(t)dp

/Cl (2)8%(t7)dx)¥( / 6% (¢7)da)?

+</ c22<m)9?(fr)da~>%(/ 0%(¢7)dx)t

«of oo

1
7

2(tridz)

2 (2)67 (17 )dx) 7} - (8¢

. 1 o n 3
< {(/ (/ da ) 6~ {¢tv)dr)*
Jo o Jg alo) ’

~da)*8° (t7)dx) } o=
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1 £ 1 ”

do ———da BT

<( gyt [ setiee
< Zloenit,

Jo fh ) -
~—-———L~—— and Cy(z) =

where Ci(z) [ o5
0 a(ﬁ)

f‘ 1_4g
o al8)
Therefore the inequality becomes, finally,

(o = )t} + IT() ~ I
o))

He((t +1)mll <

This, together with Proposition 3,shows that the sys-
tem is obviously asymptoticaily stable.
6. Conclusions

In this paper, we have studied the application of the
boundary discrete-time input to stabilize the semilin-
ear heat processes. First, we formulated the system
with homogenous boundary condition from the system
with inhomogenous boundary condition by changing
variables of state, and then we derived the svstem of
iterative discrete-time states. Next, from the iterative
discrete-time system, we replaced a sequence of eigen-
values of the operator A with new points specira by us-
ing pole assignment method. Proposition 3 reveals that
under the condition that initial state (data) satisfies the
inequality (4.20), then the semilinear heat processes can
be stabilized asymptoticallv. Lust, we showed 2 exam-
ples to clarify the main points of the whole discussions
there.

We have not given any numerical results, in this pa-
per, to check the approximation given by (3.4). More-
over, it seems to be reasonable that Proposition 3 can-
not be held for the case n = 1 as far as we insists re-
lving on the pole assignment argument for linear prin-
cipal parts. Different approaches will be available to
overcome these difficulties, such as nonlinear semigroup
method and the second method of Liapun.
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