• Title/Summary/Keyword: global warming education

Search Result 144, Processing Time 0.025 seconds

Mid- to Late Holocene Progradational Pattern of Shinduri Dunefield: Implications for Sea Level and Climatic Changes in the Western Coast of Korea (홀로세 중기 이후 신두리 해안사구의 성장 : 기후변화 및 해수면 변동과의 관련 가능성)

  • HONG, Seongchan;CHOI, Jeong Heon;KIM, Jong Wook
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.2
    • /
    • pp.87-98
    • /
    • 2010
  • There have been growing concerns for the sea level rise due to global warming in recent years. Sea level rise is a serious problem to densely populated coastal areas, because it may affect the coastal landforms to be damaged. Especially coastal sand deposits like coastal dunes are more sensitive than the other coastal landforms. In this paper, Ground Penetrating Radar (GPR) and Optically Stimulated Luminescence (OSL) dating method were used to identify the Holocene geomorphic changes of coastal dune field in Shinduri located at the western coast. The main results in this study that are the dunefield in the study area may have begun to form at around 6.8 ka and it has grown seaward thereafter. Then, dunefield appears to have extensively developed since 3.7 ka. This result, together with previous works on the sea level and climatic changes in the western coast of Korea suggest that the dunefield has been affected by the sea level regression since the Holocene high stand in the Holocene at around 6 ka and climatic change from warm and humid to cold and dry conditions occurred at 4.5 ka.

Spatial and Temporal Variability of Significant Wave Height and Wave Direction in the Yellow Sea and East China Sea (황해와 동중국해에서의 유의파고와 파향의 시공간 변동성)

  • Hye-Jin Woo;Kyung-Ae Park;Kwang-Young Jeong;Do-Seong Byun;Hyun-Ju Oh
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Oceanic wind waves have been recognized as one of the important indicators of global warming and climate change. It is necessary to study the spatial and temporal variability of significant wave height (SWH) and wave direction in the Yellow Sea and a part of the East China Sea, which is directly affected by the East Asian monsoon and climate change. In this study, the spatial and temporal variability including seasonal and interannual variability of SWH and wave direction in the Yellow Sea and East China Sea were analyzed using European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) data. Prior to analyzing the variability of SWH and wave direction using the model reanalysis, the accuracy was verified through comparison with SWH and wave direction measurements from Ieodo Ocean Science Station (I-ORS). The mean SWH ranged from 0.3 to 1.6 m, and was higher in the south than in the north and higher in the center of the Yellow Sea than in the coast. The standard deviation of the SWH also showed a pattern similar to the mean. In the Yellow Sea, SWH and wave direction showed clear seasonal variability. SWH was generally highest in winter and lowest in late spring or early summer. Due to the influence of the monsoon, the wave direction propagated mainly to the south in winter and to the north in summer. The seasonal variability of SWH showed predominant interannual variability with strong variability of annual amplitudes due to the influence of typhoons in summer.

An Analysis of Korean Middle School Student Achievement in Environmental Science in TIMSS 2003 (우리나라 중학생들의 환경 영역 성취도 국제 비교 분석)

  • Jeong, Eun-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.2
    • /
    • pp.200-211
    • /
    • 2006
  • The purpose of this study was to analyze Korean middle school student achievement in environmental science based on the TIMSS 2003 (Trends in International Mathematics and Science Study), a student comparison of 46 participating nations. Korea ranked the fourth with a mean score of 554 in environmental science. However, all 3 environment science topics assessed in TIMSS are not included in the Korean science curriculum through 8th grade, even though they are included in most other participating nations' curricula. The average percent correct of items was analyzed according to the main topic, the item type and the cognitive domain. Items that showed differences between the average percent correct of Korea and the international average as well as differences between the average percent correct of boys and girls were further analyzed. Results revealed that Korean students performed better than the international average, especially in 'use and conservation of natural resources', multiple-choice items, and items requiring 'factual knowledge'. Also, male students demonstrated significantly higher achievement than female students. On the other hand, Korean students showed relatively lower achievement in constructed-response items, items that contained content they had not learned in science lessons and items requiring descriptions of the uses and effect of science and technology. Moreover, Korean student lacked understanding about acid rain, global warming, and ozone layer destruction. Korean female students showed relatively lower environmental conceptions and lower performance on items requiring data analysis than Korean male students. On the basis of these results, this study suggested that topics of environmental science be included in the science curriculum and taught in the science classroom to help middle school students more fully comprehend environmental issues.

Error Analysis of Three Types of Satellite-observed Surface Skin Temperatures in the Sea Ice Region of the Northern Hemisphere (북반구 해빙 지역에서 세 종류 위성관측 표면온도에 대한 오차분석)

  • Kang, Hee-Jung;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.139-157
    • /
    • 2015
  • We investigated the relative errors of satellite-observed Surface Skin Temperature (SST) data caused by sea ice in the northern hemispheric ocean ($30-90^{\circ}N$) during April 16-24, 2003-2014 by intercomparing MODerate Resolution Imaging Spectroradiometer (MODIS) Ice Surface Temperature (IST) data with two types of Atmospheric Infrared Sounder (AIRS) SST data including one with the AIRS/Advanced Microwave Sounding Unit-A (AMSU) and the other with 'AIRS only'. The MODIS temperatures, compared to the AIRS/AMSU, were systematically up to ~1.6 K high near the sea ice boundaries but up to ~2 K low in the sea ice regions. The main reason of the difference of skin temperatures is that the MODIS algorithm used infrared channels for the sea ice detection (i.e., surface classification), while microwave channels were additionally utilized in the AIRS/AMSU. The 'AIRS only' algorithm has been developed from NASA's Goddard Space Flight Center (NASA/GSFC) to prepare for the degradation of AMSU-A by revising part of the AIRS/AMSU algorithm. The SST of 'AIRS only' compared to AIRS/AMSU showed a bias of 0.13 K with RMSE of 0.55 K over the $30-90^{\circ}N$ region. The difference between AIRS/AMSU and 'AIRS only' was larger over the sea ice boundary than in other regions because the 'AIRS only' algorithm utilized the GCM temperature product (NOAA Global Forecast System) over seasonally-varying frozen oceans instead of the AMSU microwave data. Three kinds of the skin temperatures consistently showed significant warming trends ($0.23-0.28Kyr^{-1}$) in the latitude band of $70-80^{\circ}N$. The systematic disagreement among the skin temperatures could affect the discrepancies of their trends in the same direction of either warming or cooling.

Intercomparison of Satellite Data with Model Reanalyses on Lower- Stratospheric Temperature (하부 성층권 온도에 대한 위성자료와 모델 재분석들과의 비교)

  • Yoo, Jung-Moon;Kim, Jin-Nam
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.137-158
    • /
    • 2000
  • The correlation and Empirical Orthogonal Function (EOF) analyses over the globe have been applied to intercompare lower-stratospheric (${\sim}$70hPa) temperature obtained from satellite data and two model reanalyses. The data is the19 years (1980-98) Microwave Sounding Unit (MSU) channel 4 (Ch4) brightness temperature, and the reanalyses are GCM (NCEP, 1980-97; GEOS, 1981-94) outputs. In MSU monthly climatological anomaly, the temperature substantially decreases by ${\sim}$21k in winter over southern polar regions, and its annual cycle over tropics is weak. In October the temperature and total ozone over the area south of Australia remarkably increase together. High correlations (r${\ge}$0.95) between MSU and reanalyses occur in most global areas, but they are lower (r${\sim}$O.75) over the 20-3ON latitudes, northern America and southern Andes mountains. The first mode of MSU and reanalyses for monthly-mean Ch4 temperature shows annual cycle, and the lower-stratospheric warming due to volcanic eruptions. The analyses near the Korean peninsula show that lower-stratospheric temperature, out of phase with that for troposphere, increases in winter and decreases in summer. In the first mode for anomaly over the tropical Pacific, MSU and reanalyses indicate lower-stratospheric warming due to volcanic eruptions. In the second mode MSU and GEOS present Quasi-Biennial Oscillation (QBO) while NCEP, El Ni${\tilde{n}}$o. Volcanic eruption and QBO have more impact on lower-stratospheric thermal state than El Ni${\tilde{n}}$o. The EOF over the tropical Atlantic is similar to that over the Pacific, except a negligible effect of El Ni${\tilde{n}}$o. This study suggests that intercomparison of satellite data with model reanalyses may estimate relative accuracy of both data.

  • PDF

Reviews in Medical Geography: Spatial Epidemiology of Vector-Borne Diseases (벡터매개 질병(vector-borne diseases) 공간역학을 중심으로 한 보건지리학의 최근 연구)

  • Park, Sunyurp;Han, Daikwon
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.5
    • /
    • pp.677-699
    • /
    • 2012
  • Climate changes may cause substantial changes in spatial patterns and distribution of vector-borne diseases (VBD's), which will result in a significant threat to humans and emerge as an important public health problem that the international society needs to solve. As global warming becomes widespread and the Korean peninsula characterizes subtropical climate, the potentials of climate-driven disease outbreaks and spread rapidly increase with changes in land use, population distributions, and ecological environments. Vector-borne diseases are typically infected by insects such as mosquitoes and ticks, and infected hosts and vectors increased dramatically as the habitat ranges of the VBD agents have been expanded for the past 20 years. Medical geography integrates and processes a wide range of public health data and indicators at both local and regional levels, and ultimately helps researchers identify spatiotemporal mechanism of the diseases determining interactions and relationships between spatial and non-spatial data. Spatial epidemiology is a new and emerging area of medical geography integrating geospatial sciences, environmental sciences, and epidemiology to further uncover human health-environment relationships. An introduction of GIS-based disease monitoring system to the public health surveillance system is among the important future research agenda that medical geography can significantly contribute to. Particularly, real-time monitoring methods, early-warning systems, and spatial forecasting of VBD factors will be key research fields to understand the dynamics of VBD's.

  • PDF

A Research on the Navigation of Northern Sea Route According to Safety of Vessel and Crews (선박 및 선원의 인명 안전을 고려한 북극해 항로 운항 연구)

  • Kim, Won-Ouk;Youn, Dae-Gwun;Park, Woe-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • Arctic Ocean has rapidly melted due to global warming, by this, commercial ship has been operating through the area. Reason to develop the Northern Sea Route(NSR) even in extreme conditions, the distance than the existing route is shortened, which bring economic benefits. For these reason, the International Maritime Organization(IMO) established safety standards of the Arctic navigation(Polar Code) in order to ensure safe operation in the Northern Sea Route. In this study, it has been described ice types and safety standards of Artic vessel what officer needs to know for safe navigation on the Arctic Ocean. And It was verified by simulation the theoretical knowledge for the safe operation of the Arctic vessel. As a result, it was found that ship needs to reduce speed and analyze ice for safe operation before enter into the ice, it is necessary to enter at right angle to break ice safety and efficiently. Also according to the result of the simulation of navigation entering in ice channel(Lead), it was difficult to change course, it is believed that require emergency training for passing Vessel. In the future, It shall be analyzed precisely under various conditions of scenario.

Seasonal Variations of Sedimentary Processes on Mesotidal Beach in Imjado, Southwestern Coast of Korea (한반도 서해남부 임자도 해빈 퇴적작용의 계절적 변화)

  • 류상옥;장진호;조주환;문병찬
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.83-92
    • /
    • 2004
  • A continuous monitoring of textural characteristics of surface sediments, sedimentation rates and beach profile was carried out to investigate the seasonal variations of sedimentary processes in the Imjado beach, southwestern coast of Korea for two years. The beach profiles consist of steep beach face and relatively flat middle and low tide beaches. The slope of the beach face increases in summer and decreases in winter, in good accordance with the standard beach cycle. Ridge and runnel systems are well developed in the middle and low tide beaches during the summer, but these structures are replaced by mega-ripples during the winter. The sediments are fining southward as well as landward. The mean grain-size tends to be increasingly coarser during seasons of autumn and winter on the north beach and during seasons of winter and spring on the south one. In addition, the sediments are eroded on the north beach and accumulated on the south one as a whole. These are probably due to southward transportation of the sediments as long-shore current (NE-SW) runs around the coastal line of the beach. However, the seasonal variations in accumulation rates are very complex and irregular. It is considered that the Imjado beach represents in non-equilibrium state, as a result of coastal and submarine topographic changes by artificial agents and sea-level uprising associated with global warming.

Analysis of Abnormal High Temperature Phenomena in Cixi-si of China using Landsat Satellite Images (Landsat 위성영상을 이용한 중국 츠시시의 이상 고온 현상 분석)

  • Park, Joon-Kyu;Lee, Jong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.34-40
    • /
    • 2017
  • In recent years, global warming has caused abnormal weather phenomena. Unusually cold climates have occurred all around the world, including cold waves in the Northeastern United States, Beijing, China, Southern India, and Pakistan, as well as floods in Chile, Kazakhstan, and Vietnam. China has been experiencing a nationwide heat wave annually since the year 2013, especially in the southern region. In this study, we used Landsat 8 OLI TIRS sensor images from four periods to analyze the characteristics of abnormal high temperature phenomena in Cixi-si, China. Land cover classification was performed using 10 bands of satellite imagery, and the surface temperature was extracted using the 10th thermal band. The results of the land cover classification of the fourth period show the changes of the time series quantitatively. The results of the surface temperature calculation provided both the average overall temperature and the average temperature of individual items. The temperature was found to be highest for buildings, followed by grassland, forest, agricultural land, water systems, and tidal flats in the same period.

Designation of fuel oil scrubber nozzle positioning using CFD analysis and PIV methods (CFD 해석 및 PIV 실험을 통한 연료유 스크러버의 노즐 위치선정)

  • Kim, In-Cheol;Kim, Chang-Goo;Park, Sung-Jin;Cho, Dong-Yeon;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.773-778
    • /
    • 2015
  • Global warming has recently become an issue that has resulted in a growing trend to minimize environmental pollution. The International Maritime Organization (IMO) has shown that the majority of marine atmospheric pollution occurs as a result of emissions from marine vessels. Therefore, the environmental regulations and emission standards regarding marine vessels have gradually become stricter, and the research and development in this area is experiencing significant progress. In this study, a nozzle for a fuel oil scrubber was investigated using computational fluid dynamics (CFD) and particle imaging velocimetry (PIV). Experiments were conducted on scaled-down model of the scrubber to determine its performance, which was then compared with CFD results. Based on the experimental results, it was found that at a spray angle of $66^{\circ}$, the spray velocity at the nozzle was 20.1 m/s. From this comparison, a full-scale scrubber model was analyzed using CFD, and the effect of the positioning of the nozzle was studied.