• Title/Summary/Keyword: global sea level rise

Search Result 76, Processing Time 0.028 seconds

Reviews on the Adaptation Strategy to Climate Change -Application to the Sea Level Rise- (기후변화 적응방안 연구 -해수면 상승을 중심으로-)

  • Cho Kwangwoo;Maeng Jun-Ho;Kim Hae-Dong;Oh Young Min;Kim Dong-Sun;Kim Mu Chan;Yoon Jong Hwui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.81-88
    • /
    • 2004
  • We review the adaptation strategies of the 21st climate change in an application to sea level rise. For the development of appropriate adaptation strategies on the coast vulnerable to the sea level rise, we have to consider the issues such as where to adapt, how to adapt, and when to adapt. The coastal target needed adaptation can be found by the evaluation of adaptive capacity of the coastal zone which requires the understanding of impacts and adaptive potential of the natural and socioeconomic systems in the coastal zone. Planned adaptation options to sea level rise can be classified into three generic approaches as managed retreat, accommodation, and protection In practice, the implementation of the options requires the analysis of land use, degree of vulnerability, cost and benefit, etc, and may be combination of the options rather than one approach. In terms of the response timing, the adaptation can be grouped as anticipatory and reactive ones. Generally it is more effective to consider both anticipatory and reactive adaptations at the same time for the impacts of future sea level rise. Due to the scientific uncertainty of climate change issues including sea level rise, the adaptation processes have to be designed to deal with a series of processes such as information md awareness establishment, planning and design implementation, and monitoring and evaluation in continuity and long-term period.

  • PDF

Automatic Coastline Extraction and Change Detection Monitoring using LANDSAT Imagery (LANDSAT 영상을 이용한 해안선 자동 추출과 변화탐지 모니터링)

  • Kim, Mi Kyeong;Sohn, Hong Gyoo;Kim, Sang Pil;Jang, Hyo Seon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.45-53
    • /
    • 2013
  • Global warming causes sea levels to rise and global changes apparently taking place including coastline changes. Coastline change due to sea level rise is also one of the most significant phenomena affected by global climate change. Accordingly, Coastline change detection can be utilized as an indicator of representing global climate change. Generally, Coastline change has happened mainly because of not only sea level rise but also artificial factor that is reclaimed land development by mud flat reclamation. However, Arctic coastal areas have been experienced serious change mostly due to sea level rise rather than other factors. The purposes of this study are automatic extraction of coastline and identifying change. In this study, in order to extract coastline automatically, contrast of the water and the land was maximized utilizing modified NDWI(Normalized Difference Water Index) and it made automatic extraction of coastline possibile. The imagery converted into modified NDWI were applied image processing techniques in order that appropriate threshold value can be found automatically to separate the water and land. Then the coastline was extracted through edge detection algorithm and changes were detected using extracted coastlines. Without the help of other data, automatic extraction of coastlines using LANDSAT was possible and similarity was found by comparing NLCD data as a reference data. Also, the results of the study area that is permafrost always frozen below $0^{\circ}C$ showed quantitative changes of the coastline and verified that the change was accelerated.

Future Sea Level Projections over the Seas Around Korea from CMIP5 Simulations (CMIP5 자료를 활용한 우리나라 미래 해수면 상승)

  • Heo, Tae-Kyung;Kim, Youngmi;Boo, Kyung-On;Byun, Young-Hwa;Cho, Chunho
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • This study presents future potential sea level change over the seas surrounding Korea using Climate Model Intercomparison Project Phase 5 9 model ensemble result from Representative Concentration Pathways (RCPs), downloaded from icdc.zmaw.de. At the end of 21st century, regional sea level changes are projected to rise 37.8, 48.1, 47.7, 65.0 cm under RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenario, respectively with the large uncertainty from about 40 to 60 cm. The results exhibit similar tendency with the global mean sea level rise (SLR) with small differences less than about 3 cm. For the East Sea, the Yellow Sea, and the southern sea of Korea, projected SLR in the Yellow Sea is smaller and SLR in the southern sea is larger than the other coastal seas. Differences among the seas are small within the range of 4 cm. Meanwhile, Commonwealth Scientific and Industrial Research Organization (CSIRO) data in 23 years shows that the mean rate of sea level changes around the Yellow Sea is high relative to the other coastal seas. For sea level change, contribution of ice and ocean related components are important, at local scale, Glacial Isostatic Adujstment also needs to be considered.

Economic Impacts of Sea-level Rise and Optimal Protection on Jeju Island (해수면 상승에 따른 경제적 피해 비용 및 최적 해안 방어 비율 추정 -제주도를 대상으로-)

  • Min, Dongki;Cho, Kwangwoo
    • Environmental and Resource Economics Review
    • /
    • v.22 no.1
    • /
    • pp.127-145
    • /
    • 2013
  • This study estimates the economic impact of sea-level rise on Jeju island and suggests the optimal protection level based on the FUND model. There exist a number of studies that estimate the impacts of sea-level rise on global scale, but their results are of limited use for local scale such as Korea. Therefore, this study applies some specific indicators and data of Korea into to FUND model for deriving site specific estimates. The results show that 2.01%~2.25% of land could be inundated by sea-level rise until 2100. The value of affected land is about 6.4%~7.2% of total land value. The discrepancy between the figures indicates that the area affected by sea-level rise is much more valuable than the rest of Jeju island. The optimal protection level in Jeju city is higher than that in Seguipo city, even though the coastal length of Jeju city is longer than that of Seguipo. This is due to the fact that the economic value of Jeju city is much higher than that of Seoguipo city.

A Study on Estimation of Design Tidal level Considering Sea Level Change in the Korean Peninsula (한반도의 해수면 상승을 고려한 설계조위 산정에 관한 연구)

  • Choo, Tai Ho;Sim, Su Yong;Yang, Da Un;Park, Sang Jin;Kwak, Kil Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.464-473
    • /
    • 2016
  • The air temperatures of the coast and inland are rising due to an increase in carbon dioxide emissions and abnormal climate phenomena caused by global warming, El Nino, La Nina and so on. The sea levels of the Earth are rising by approximately 2.0 mm per year (global average value) due to the thermal expansion of sea water, melting of glaciers and other causes by global warming. On the other hand, when it comes to designing a hydraulic structure or coastal hydraulic structure, the standard of the design water level is decided by analyzing four largeness tide values and a harmonic constant with the observed tidal water level or simulating numerical model. Therefore, the design tidal water level needs to consider an increasing speed of the seawater level, which corresponds to the design frequency. In the present study, the observed tidal water levels targeting 46 tidal stations operated by the Korea Hydrographic and Oceanographic Administration (KHOA) from the beginning of observations to 2015 per hour were collected. The variation of the monthly and yearly and increasing ratio were performed and divided into 7 seas, such as east and west part of the Southern Sea, south part and middle of the East Sea, south part and middle of the Western Sea, and Jeju Sea. The current study could be used to determine the cause of local seawater rises and reflect the design tidal water level as basic data.

Middle School Students' Perceptions about Global Environmental Problems using Drawings (그리기를 활용한 중학생의 지구 환경 문제에 대한 인식 조사)

  • Cheong, Cheol
    • Hwankyungkyoyuk
    • /
    • v.24 no.1
    • /
    • pp.76-87
    • /
    • 2011
  • The purpose of this study was to investigate middle school students' perceptions about global environmental problems using drawings. The study was involved the collection of drawing data from 112 ninth grade students from a middle school in Daegu Metropolitan City. The environment task was administrated to students drew a drawing of an global environmental problems and explained their drawing in their own words. Also, students was asked to write what he or she can do to solve global environmental problems. The results are as follows: First, air pollution is the most important global environmental problem, followed by water pollution, global warming, sea level rise, deforestation, waste, loss of biodiversity, and so on. Second, the students' drawings were characterized into two aspects: One is a macroscopic viewpoint and the other is everyday viewpoint. Third, the students' practical action plan to do solve global environmental problems were walk, public traffic, do not throw trash, plant trees, etc. Educators should take into account the perceptions of global environmental problems and teaching-learning strategies to enhance students' understanding of global environment.

  • PDF

Variability of Sea Water Characteristics and Sea Levels Due to Climate Change and Appropriate Adaptation Strategies in Gyeonggi Bay (한국 경기만의 기후 변화에 따른 해수 물리적 특성 및 해수면 영향과 적응 대책)

  • Suah Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.98-105
    • /
    • 2023
  • This paper studies the effects of global climate change on Gyeonggi Bay and appropriate adaptation strategies. Located along the west coast of Korea, Gyeonggi Bay is renowned as one of the five most important global tidal flats (wetlands). Due to climate change in Gyeonggi Bay, the water temperature is predicted to increase by 1.44 ℃ by the year 2100, the salinity to decrease by 1.1 PSU, the sea level to rise by 35.2 cm, and approximately 150.5 km2 of the coast to be submerged due to the rising sea levels. Adaptation strategies to combat negative impacts of climate change on the ecological environment of Gyeonggi Bay include 1) supporting the self-adaptation capability of Gyeonggi Bay's natural environment to be sustainable, and 2) protecting lowlands adjacent to tidal flats and low-lying areas of the coast against human involvement to reserve more space for upslope shifts of biota with rising sea levels.