• 제목/요약/키워드: global rice

검색결과 239건 처리시간 0.032초

Review of Rice: Production, Trade, Consumption, and Future Demand in Korea and Worldwide

  • Jeong, Jong-Min;Kim, Eun Chong;Venkatanagappa, Shoba;Lee, Jeom-Sig
    • 한국작물학회지
    • /
    • 제62권3호
    • /
    • pp.157-165
    • /
    • 2017
  • Being a staple food for more than half of the population of the world and South Korea, rice is an important crop. For the past 20 years, global paddy rice cultivation area and production have shown an annual growth of 0.46% and 1.61%, respectively. Global rice consumption for food and processing has increased by 1.37% and 3.68%, respectively. Due to the main reason for such increasing human population, it is expected that from 439 million tons in 2010, additional 116 million tons will be needed in 2035. Global rice imports and exports have doubled in the last 20 years. However, in spite of such increment, global rice exports in 2013 were 8.4% of the total production. It is thought that rice protection policies in the producing countries are the main reason for such small scale of rice trading. In the past 5 years, India recorded the largest growth rate in rice exports (51.4%), whereas China showed the largest growth rate in imports (61.0%). For global utilization of milled rice during the same period, approximately 79.4% was used as food, 7.2% as animal feeds, and 1.4% for processing. Regionally, Asia has shown a similar pattern to the global rice usage, whereas utilization for processing in America, for food in Africa, and for animal feed in Europe was relatively higher than the global rice usage. Korea's cultivation area and production since the last 5 years, are 0.5% and 0.8% of those of the world, respectively. Its annual rice export is approximately 3,000 tons, which is 0.01% of the global rice export. Korea's rice utilization is high for food and low for feed and for processing relative to global rice utilization. Therefore, a review must be conducted to increase Korea's utilization of rice for processing and for feed production.

Global Rice Production, Consumption and Trade: Trends and Future Directions

  • Bhandari, Humnath
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2019년도 추계학술대회
    • /
    • pp.5-5
    • /
    • 2019
  • The objectives of this paper are (i) to analyze past trends and future directions of rice production, consumption and trade across the world and (ii) to discuss emerging challenges and future directions in the global rice industry. Rice is a staple food of over half of the world's 7.7 billion people. It is an important economic, social, political, and cultural commodity in most Asian countries. Rice is the $1^{st}$ most widely consumed, $2^{nd}$ largely produced, and $3^{rd}$ most widely grown food crop in the world. It was cultivated by 144 million farms in over 100 countries with harvested area of over 163 million ha producing about 745 million tons paddy in 2018. About 90% of the total rice is produced in Asia. China and India, the biggest rice producers, account for over half of the world's rice production. Between 1960 and 2018, world rice production increased over threefold from 221 to 745 million tons (2.1% per year) due to area expansion from 120 to 163 million ha (0.5% per year) and paddy yield increase from 1.8 to 4.6 t/ha (1.6% per year). The Green Revolution led massive increase in rice production prevented famines, provided food for millions of people, reduced poverty and hunger, and improved livelihoods of millions of Asians. The future increase in rice production must come from yield increase as the scope for area expansion is limited. Rice is the most widely consumed food crop. The world's average per capita milled rice consumption is 64 kilograms providing 19% of daily calories. Asia accounted for 84% of global consumption followed by Africa (7%), South America (3%), and the Middle East (2%). Asia's per capita rice consumption is 100 kilograms per year providing 28% of daily calories. The global and Asian per capita consumption increased from the 1960s to the 1990s but stable afterward. The per capita rice consumption is expected to decline in Asia but increase outside Asia especially in Africa in the future. The total milled rice consumption was about 490 million tons in 2018 and projected to reach 550 million tons by 2030 and 590 million tons by 2040. Rice is thinly traded in international market because it is a highly protected commodity. Only about 9% of the total production is traded in global rice market. However, the volume of global rice trade has increased over six-fold from 7.5 to 46.5 million tons between the 1960s and 2018. A relatively small number of exporting countries interact with a large number of importing countries. The top five rice exporting countries are India, Thailand, Vietnam, Pakistan, and China accounting for 74% of the global rice export. The top five rice importing countries are China, Philippines, Nigeria, European Union and Saudi Arabia accounting for 26% of the global rice import. Within rice varieties, Japonica rice accounts for the highest share of the global rice trade (about 12%) followed by Basmati rice (about 10%). The high concentration of exports to a few countries makes international rice market vulnerable to supply disruptions in exporting countries, leading to higher world prices of rice. The export price of Thai 5% broken rice increased from 198 US$/ton in 2000 to 421 US$/ton in 2018. The volumes of trade and rice prices in the global market are expected to increase in the future. The major future challenges of the rice industry are increasing demand due to population growth, rising demand in Africa, economic growth and diet diversification, competition for natural resources (land and water), labor scarcity, climate change and natural hazards, poverty and inequality, hunger and malnutrition, urbanization, low income in rice farming, yield saturation, aging of farmers, feminization of agriculture, health and environmental concerns, improving value chains, and shifting donor priorities away from agriculture. At the same time, new opportunities are available due to access to new technologies, increased investment by the private sector, and increased global partnership. More investment in rice research and development is needed to develop and disseminate innovative technologies and practices to overcome problems and ensure food and nutrition security of the future population.

  • PDF

Rice Yield Response to Biochar Application Under Different Water Managements Practices

  • Jung, Won-Kyo
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.16-19
    • /
    • 2012
  • Increasing rice grain yield is critical for feeding rapid increasing of Asian population. However, global warming effect may be negative for sustainable rice production. Therefore it is essential to develop technologies not only for increasing grain yield but also for reducing global warming effect. Biochar, which is carbonized biomass, has a great potential of carbon sequestration and soil quality improvement, which can contribute grain yield increasing. In this study, rice yield responses to biochar application on the rice cropping system were evaluated with field experiments under different water management practices at the research farm of the University of Missouri-Columbia Delta Research Center, Portageville, MO. Biochar (i.e., $4Mg\;ha^{-1}$) was produced using field scale pyrolyzer and incorporated into the field 4 months prior to planting. Rice was grown under three different water management practices. Result showed that no significant yield difference was found in the biochar application plots compared to rice hull and control plots from the 2 years field study at the very fertile soil. However, rainfed management results in severe reduction of yield. Research concludes that the biochar application does not significantly influence on rice yield increasing especially for very fertile soils.

왕겨섬유를 포함한 펄프몰드 제조 및 특성 평가 (Manufacturing and Characterization of Pulp Mold with Rice Husk Fiber)

  • 김형민;성용주;박영석;신재철
    • 펄프종이기술
    • /
    • 제48권3호
    • /
    • pp.66-72
    • /
    • 2016
  • The applicability of rice husk fiber as a raw material for eco-friendly pulp mold was evaluated in this study. The higher demand of environmental friendly packaging material resulted in the more interest for the natural fiber based pulp mold. The rice husk which is an abundant agricultural byproduct in Asia could be defiberized by an alkaline digestion process. The changes in the pulp mold making process and the properties of pulp mold by the addition of the rice husk were investigated. The addition of rice husk fiber to the pulp mold made with OCC or UBKP resulted in the increase in drainage at the pulp mold forming process. In case of UBKP pulp mold, the addition of rice husk fiber increased the drying efficiency after pulp mold forming since the structure of pulp mold became more bulkier by the addition of the rice husk fiber. Those results showed the rice husk fiber could be applied to the pulp mold manufacturing as one of the eco-friendly natural fiber resources.

Study on rice double cropping in Southern Korea paddy field

  • Seong, Deok-Gyeong;Kim, Young-Gwang;Nam, Jin-Woo;Choi, Yong-Jo;Hong, Kwang-Pyo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.320-320
    • /
    • 2017
  • Recently, the rice growing time was extended by the global warming. This study was conducted to investigate the possibility of rice double cropping system in southern Korea. The first transplanting was with six cultivars ('Kilala397', 'Baekilmi', 'Joun', 'Hanseol' and 'Jungmo1031') on April 15. All cultivars could be harvested at the end of July. Adaptable cultivars for the first cultivation were 'Kilala397', Baekilmi' and 'Joun'. The rice yields at the first cultivation was about 95% of local average yield. Although the yield was slightly less, the first cultivation was considered to have economic benefits, because of the high market price of rice. In the second transplanting was with five cultivars ('Manjong', 'Joun', 'Deabo', 'Jinok' and 'Kilala397') on April 15. All cultivars could be harvested in early November. Adaptable cultivars for the second cultivation were 'Jinok' and 'Kilala397'. The rice yields at the second cultivation was about below the 60% of local average yield, because there was the less growth than normal season cultivation. Consequently, southern Korea' annual rice double cropping system is considered to have no economic value yet. However, the research should be continued considering the temperature rise of global warming.

  • PDF

Coproduction of Enzymes and Beta-Glucan by Aspergillus oryzae Using Solid-State Fermentation of Brown Rice

  • Ji, Su Bin;Ra, Chae Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.1028-1034
    • /
    • 2021
  • The effect of medium composition on enzyme and β-glucan production by Aspergillus oryzae KCCM 12698 was investigated. Brown rice, rice bran, nitrogen, and ascorbic acid are key components of the synthetic medium used in liquid-state fermentation. To determine the optimal concentrations of these components for enzyme and β-glucan production, we conducted one factor at a time experiments, which showed that the optimal concentrations were 30 g/l brown rice, 30 g/l rice bran, 10 g/l soytone, and 3 g/l ascorbic acid. Pretreatment of brown rice for 60 min prior to inoculation enhanced fungal biomass, while increasing the production of enzymes and β-glucan using solid-state fermentation. Maximum fungal biomass of 0.76 mg/g, amylase (26,551.03 U/g), protease (1,340.50 U/g), and β-glucan at 9.34% (w/w) were obtained during fermentation. Therefore, solid-state fermentation of brown rice is a process that could enhance yield and overall production of enzymes and β-glucan for use in various applications.

Global Approaches to Identify Genes Involved during Infection Structure Formation in Rice Blast Fungus, Magnaporthe grisea

  • Park, Woo-Bong
    • The Plant Pathology Journal
    • /
    • 제19권1호
    • /
    • pp.34-42
    • /
    • 2003
  • The ascomycete Magnaporthe grisea is a pathogen of rice blast and is known to form specialized infection structures called appressoria for successful infection into host cells. To understand the molecular mechanism underlying infection process, appressorium-related genes were identified through global approaches including EST sequencing, differential hybridization, and sup-pression subtractive hybridization. EST database was generated on >2,000 cDNA clones randomly selected from appressorium stage cDNA library. Large number of ESTs showed homology to known proteins possibly involved in infection-related cellular development (attachment, germination, appressorium formation, and colonization) of rice blast fungus. The 1051 ESTs showing significant homology to known genes were assigned to 11 functional categories. Differential hybridization and suppression subtractive hybridization were applied to identify genes showing an appressorium stage specific expression pattern. A number of genes were selected as up-regulated during appressorium formation compared with the vegetative growing stage. Clones from various cDNA libraries constructed in different developmental stages were arrayed on slide glass for further expression profiling study. functional characterization of genes identified from these global approaches may lead to a better understand-ing of the infection process of this devastating plant disease, and the development of novel ways to protect host plant.

쌀 전분의 유동성을 함유한 영.유아용 조제분유의 공정 관리 (In-Process Control of an Infant Formula with Rice Starch using Rheology)

  • 허영석
    • Journal of Dairy Science and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.45-49
    • /
    • 2008
  • We studied the feasibility of monitoring and controlling the manufacturing process of an infant formula with rice starch by testing in-process samples using rheology. We used DSC to first determine the gelatinization temperature of the rice starch, a key ingredient of this product. With this characteristic temperature and the process design known, rheological measurements were conducted on the in-process samples for detecting the presence and extent of gelatinization and retrogradation of rice starch; in-process samples were collected from the carbohydrate tank, after the homogenizer, and the finished product tank. The correlation between the rheological measurements on these samples and manufacturing performance proved that rheology is a very sensitive tool for monitoring the structural development of this infant formula during main process, and their influence on sterilization efficiency. We observed that the lower degree of gelatinization during main process, a shorter residence time in the finished product tank, and using caustic flush rather than clean-in-place additively lead to higher sterilization efficiency. These findings can be utilized for a rational design and analysis of the manufacturing process for infant formulas containing rice starch.

  • PDF

국내 농업기후지대 별 최적기후모형 선정을 통한 미래 벼 도열병 발생 위험도 예측 (Predicting Potential Epidemics of Rice Leaf Blast Disease Using Climate Scenarios from the Best Global Climate Model Selected for Individual Agro-Climatic Zones in Korea)

  • 이성규;김광형
    • 한국기후변화학회지
    • /
    • 제9권2호
    • /
    • pp.133-142
    • /
    • 2018
  • Climate change will affect not only the crop productivity but also the pattern of rice disease epidemics in Korea. Impact assessments for the climate change are conducted using various climate change scenarios from many global climate models (GCM), such as a scenario from a best GCM or scenarios from multiple GCMs, or a combination of both. Here, we evaluated the feasibility of using a climate change scenario from the best GCM for the impact assessment on the potential epidemics of a rice leaf blast disease in Korea, in comparison to a multi?model ensemble (MME) scenario from multiple GCMs. For this, this study involves analyses of disease simulation using an epidemiological model, EPIRICE?LB, which was validated for Korean rice paddy fields. We then assessed likely changes in disease epidemics using the best GCM selected for individual agro?climatic zones and MME scenarios constructed by running 11 GCMs. As a result, the simulated incidence of leaf blast epidemics gradually decreased over the future periods both from the best GCM and MME. The results from this study emphasized that the best GCM selection approach resulted in comparable performance to the MME approach for the climate change impact assessment on rice leaf blast epidemic in Korea.

Effects of elevated CO2 concentration and temperature on growth and production of Oryza sativa L. cv. Ilmi, one of the main rice varieties in Korea

  • Lee, Eung-Pill;Park, Jae-Hoon;Jang, Rae-Ha;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제38권3호
    • /
    • pp.335-342
    • /
    • 2015
  • This research was conducted to examine the changes in growth and production of Oryza sativa L. cv. Ilmi, which was developed to cultivate high yielding rice variety in the Southern plains of Korea. The seedlings of the rice were cultivated from May to October in 2012 under three different conditions: control, AC-AT, ambient $CO_2$ + ambient temperature; AC-ET, ambient $CO_2$ + elevated temperature; EC-ET, elevated $CO_2$ + elevated temperature. The aboveground biomass, belowground biomass, the total biomass of the rice, and panicle weight per individual were the heaviest in the EC-ET. But, the number of grains per panicle and the weight of one grain was higher at the condition of AC-ET and EC-ET than that of AC-AT. The number of tiller was higher at the condition of AC-AT and AC-ET than that of EC-ET. However, there was no significant difference in the number of panicles per individual and the ripened grain rate among the control and global warming treatments. Crop yield was the highest in the EC-ET. This result means that the global warming condition should be considered in the selection of suitable paddy field for the limibyeo in the future.