Browse > Article
http://dx.doi.org/10.5423/PPJ.2003.19.1.034

Global Approaches to Identify Genes Involved during Infection Structure Formation in Rice Blast Fungus, Magnaporthe grisea  

Park, Woo-Bong (Agrochem R&D Center, LG Life Science Research Park)
Publication Information
The Plant Pathology Journal / v.19, no.1, 2003 , pp. 34-42 More about this Journal
Abstract
The ascomycete Magnaporthe grisea is a pathogen of rice blast and is known to form specialized infection structures called appressoria for successful infection into host cells. To understand the molecular mechanism underlying infection process, appressorium-related genes were identified through global approaches including EST sequencing, differential hybridization, and sup-pression subtractive hybridization. EST database was generated on >2,000 cDNA clones randomly selected from appressorium stage cDNA library. Large number of ESTs showed homology to known proteins possibly involved in infection-related cellular development (attachment, germination, appressorium formation, and colonization) of rice blast fungus. The 1051 ESTs showing significant homology to known genes were assigned to 11 functional categories. Differential hybridization and suppression subtractive hybridization were applied to identify genes showing an appressorium stage specific expression pattern. A number of genes were selected as up-regulated during appressorium formation compared with the vegetative growing stage. Clones from various cDNA libraries constructed in different developmental stages were arrayed on slide glass for further expression profiling study. functional characterization of genes identified from these global approaches may lead to a better understand-ing of the infection process of this devastating plant disease, and the development of novel ways to protect host plant.
Keywords
appressorium; differential hybridization; EST; rice blast fungus; suppression subtractive hybridization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adams, M. D., Dubnick, M., Kerlavage, A. R, Moreno, R, Kelley, J. M., Utterback, T. R., Nagle, J. W., Fields, C. and Venter, J. C. 1992. Sequence identification of 2,375 human brain genes. Nature 355:632-634   DOI   ScienceOn
2 Alexander, N. J., Hohn, T. M. and McCormick, S. P. 1998. The TRIll gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Appl. Environ. Microbiol. 64:221-225
3 Choi, W. and Dean, R. A. 1997. The adenylate cyclase gene MACI of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973-1983   DOI   ScienceOn
4 Deising, H., Nicholson, R. L., Haug, M., Howard, R. J. and Mengden, K. 1992. Adhesion pad formation and the involvement of cutinase and esterases in the attachment of uredospores to the host cuticle. Plant Cell 4: 1101-1111   DOI   ScienceOn
5 Diatchenko, L., Lau, Y. F., Campbell, A. P., Chenchik, A., Moqadam, F., et al. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissuespecific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93:6025-30   DOI   ScienceOn
6 Hamer, J. E. and Talbot, N. J. 1998. Infection-related development in the rice blast fungus Magnaporthe grisea. Curro Opin. Microbiol. 1:693-697   DOI   ScienceOn
7 Howard, R. J. and Ferrari, M. A. 1989. Role of melanin in appressorium formation. Exp. Mycol. 13:403-418   DOI
8 de Jong, J. C, McCormack, B. J., Smimoff, N. and Talbot, N. J. 1997. Glycerol generates turgor in rice blast. Nature 389:244-245   DOI   ScienceOn
9 Justesen, A., Somerville, S., Christiansen, S. and Giese, H. 1996. Isolation and characterization of two novel genes expressed in germinating conidia of the obligate biotroph Erysiphe graminis' f. sp. hordei. Gene 170: 131-135   DOI   ScienceOn
10 McCafferty, H. R. K. and Talbot, N. J. 1998. Identification of three ubiquitin genes of the rice blast fungus Magnaporthe grisea, one of which is highly expressed during initial stages of plant colonization. Curro Genet. 33:352-361   DOI   ScienceOn
11 Ou, S. H. 1985. Rice Diseases, 2nd ed. (Kew, Surrey, UK: Commonwealth Mycological Institute)
12 Rauyaree, P., Choi, W., Fang, E., Blackmon, B. and Dean, R. A 2001. Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea. Mol. Plant Pathol' 2:347-354   DOI   ScienceOn
13 Vidal-Cros, A, Viviani, F., Labesse, G., Boccara, M. and Gaudry, M. 1994 Polyhydroxynaphthalene reductase involved in melanin biosynthesis in Magnaporthe grisea: purification, cDNA cloning and sequencing. Eur. J. Biochem. 219:985-992   DOI   ScienceOn
14 White, O. and Kerlavage, A. R. 1996. TDB: New databases for biological discovery. Methods Enrymol. 266:27-40   DOI
15 Kruger, W. M., Pritsch, C, Chao, S. and Muehlbauer, G. J. 2002. Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum. Mol. Plant-Microbe Interact. 15:445-455   DOI   ScienceOn
16 Xoconostle-Cazares, B., Specht, C. A, Robbins, P. W., Liu, Y, Leon, C. and Ruiz-Herrera, J. 1997. Umchs5, a gene coding for a class IV chitin synthase in Ustilago maydis. Fungal Genet. BioI. 22: 199-208   DOI   ScienceOn
17 Xu, J.-R., Staiger, C. J. and Hamer, J. E. 1998. Inactivation of the mitogen-activated protein kinase Mpsl from the rice blast fungus prevents penetration of host cell but allows activation of plant defense responses. Proc. Natl. Acad. Sci. USA 95: 12713-12718   DOI   ScienceOn
18 Sweigard, J. A, Carroll, A M., FarraH, L., Chumley, F. G. and Valent, B. 1998. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant-Microbe Interact. 11:404-412   DOI   ScienceOn
19 Xuei, X, Bhairi, S., Staples, R. C. and Yoder, O. C. 1992. Characterization of INF56, a gene expressed during infection structure development of Uromyces appendiculatus. Gene 110:49-55   DOI   ScienceOn
20 Dean, R. A. 1997. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol. 35:211-234   DOI   PUBMED   ScienceOn
21 Lee, Y.-H. and Dean, R. A. 1994. Hydrophobicity of contact surface induces appressorium formation of Magnaporthe grisea. FEMS Microbiol. Lett. 115:71-76   DOI
22 Lee, Y.-H. and Dean, R. A. 1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell 5:693-700   DOI   ScienceOn
23 Maeda, T., Wurgler-Murphy, S. and Saito, H. 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242-245   DOI   PUBMED   ScienceOn
24 Lee, Y-H. and Dean, R. A. 1993. Stage-specific gene expression during infection structure formation of Magnaporthe grisea. Exp. Mycol. 17:215-222   DOI   ScienceOn
25 Kamakura, T., Yamaguchi, S., Saitoh, K., Teraoka, T. and Yamaguchi, I. 2002. A novel gene, CBP1, encoding a putative extracellular chitin binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium formation. Mol. Plant-Microbe Interact. 15:437-444   DOI   ScienceOn
26 Kamoun, S., Hraber, P., Sorbal, B., Nuss, D. and Govers, F. 1999. Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genet. BioI. 28:94-106   DOI   ScienceOn
27 Balhadere, P. V. and Talbot, N. J. (2001) PDEl encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell 13:1987-2004   DOI   ScienceOn
28 Hahn, M., Neef, U., Struck, C, Gottfert, M. and Mendgen, K. 1997. A putative amino acid transporter is specifically expressed in haustoria of the rust fungus Uromyces fabae. Mol. PlantMicrobe Interact. 10:438-445   DOI   ScienceOn
29 Talbot, N. J., Ebbole, D. J. and Hamer, J. E. 1993. Identification and characterization of MPGi, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575-1590   DOI   ScienceOn
30 Gilbert, R. D., Johnson, A. M. and Dean, R. A. 1996. Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiol. Mol. Plant Pathol. 48:335-346   DOI   ScienceOn
31 Liu, S. and Dean, R. A. 1997. G protein alpha subunit genes control growth, development and pathogenicity of Magnaporthe grisea. Mol. Plant-Microbe Interact. 10:1075-1086   DOI   PUBMED   ScienceOn
32 Wubben, J. P., Joosten, M. H. A J. and De Wit, P. J. G. M. 1994. Expression and localization of two in planta induced extracellular proteins of the fungal tomato pathogen Cladosporium fulvum. Mol. Plant-Microbe Interact. 7:516-524   DOI   ScienceOn
33 Xiong, L., Lee, M-W., Qi, M. and Yang, Y. 2001. Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. Mol. Plant-Microbe interact. 14:685-692   DOI   ScienceOn
34 Xu, J.-R. 2001. MAP kinases in fungal pathogens. Fungal Genet. Bioi. 31:137-152
35 Sweigard, J. A, Chumley, F. G. and Valent, B. 1992. Disruption of a Magnaporthe grisea cutinase gene. Mol. Gen. Genet. 232: 183-190
36 Urban, M., Bhargava, T and Hamer, J. E. 1999. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J. 18:512-521   DOI   ScienceOn
37 Pieterse, C. M. J., Risseeuw, E. P. and Davidse, L. C. 1991. An in planta-induced gene of Phytophthora infestans codes for ubiquitin. Plant Mol. Bioi. 17:799-811   DOI   ScienceOn
38 Chumley, F. G. and Valent, B. 1990. Genetic analysis of melanindeficient, non-pathogenic mutants of Magnaporthe grisea. Mol. Plant-Microbe Interact. 3: 135-143   DOI
39 Howard, R. J. and Valent, B. 1996. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol. 50:491-512   DOI   ScienceOn
40 Soanes, D. M., Skinner, W., Keon, J., Hargreaves, J. and Talbot, N. J. 2002. Genomics of phytopathogenic fungi and the development of bioinformatic resources. Mol. Plant-Microbe Interact. 15:421-427   DOI   ScienceOn
41 Xu, J.-R. and Hamer, J. E. 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Develop. 10:2696-2706   DOI   ScienceOn
42 Thines, E., Weber, R. and Talbot, N. J. 2000. MAP kinase and protein kinase A dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703-1718   DOI   ScienceOn
43 Mesterhazy, A, Bartok, T, Mirocha, C. G. and Komoroczy, R. 1999. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed. 118:97-110   DOI   ScienceOn
44 Fang, E. G. and Dean, R. A. 2000. Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Mol. Plant-Microbe Interact. 13: 1214-1227   DOI   ScienceOn
45 Kamakura, T., Xiao, J., Choi, W., Kochi, T., Yamaguchi, S., Teraoka, T. and Yamaguchi, I. 1999. cDNA subtractive cloning of genes expressed during early stage of appressorium formation by Magnaporthe grisea. Biosci. Biotechnol. Biochem. 63:1407-1413   DOI   ScienceOn
46 Lee, S.-C and Lee, Y.-H. 1998. Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea. Mol. Cells 8:698-704
47 Talbot, N. J., Kershaw, M. J., Wakley, G. E., de Vries, O. M. H., Wessel, J. G. et al. 1996. MPGi encodes a fungal hydrophobin involved in surface interactions during infectionrelated development of Magnaporthe grisea. Plant Cell 8:985-999   DOI   ScienceOn
48 Judelson, H. S. and Michelmore, R. W. 1990. Highly abundant and stage-specific mRNAs in the obligate pathogen Bremia lactucae. Mol. Plant-Microbe Interact. 3:225-232   DOI   ScienceOn
49 Money, N. P. 1997. Mechanism linking cellular pigmentation and pathogenicity in rice blast disease. Fungal Genet. Bioi. 22:151-152   DOI   ScienceOn
50 Nurnberger, T. and Scheel, D. 2001. Signal transmission in the plant immune response. Trends in Plant Science 6:372-379   DOI   ScienceOn
51 Gold, S. E., Garcia-Pedrajas, M. D. and Martinez-Espinoza, A. D. 2001. New (and used) approaches to the study of fungal pathogenicity. Annu. Rev. Phytopathol. 39:337-365   DOI   ScienceOn
52 Liu, Z., Szabo, L. J. and Bushnell, W. R. 1993. Molecular cloning and analysis of abundant and stage-specific mRNAs from Puccinia graminis. Mol. Plant-Microbe Interact. 6:84-91   DOI   ScienceOn
53 Weber, R. W. S., Wakley, G. E., Thines, E. and Talbot, N. J. 2001. the vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma 216: 101-112   DOI   PUBMED   ScienceOn
54 Yang, G., Rose, M. S., Turgeon, B. G. and Yoder, O. C. 1996. A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell 8:2139-2150   DOI   ScienceOn
55 Balhadere, P. V., Foster, A. J. and Talbot, N. J. 1999. Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol. PlantMicrobe Interact. 12:129-142   DOI   ScienceOn
56 Hwang, C. S., Flaishman, M. A. and Kolattukudy, P. E. 1995. Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides and a marked decrease in virulence by disruption of this gene. Plant Cell 7: 183-193   DOI   ScienceOn
57 Bhari, S. M., Staples, R. C., Freve, P. and Yoder, O. C. 1989. Characterization of an infection structure-specific gene from the rust fungus Uromyces appendiculatus. Gene 81:237-243   DOI   ScienceOn
58 Howard, R. J., Ferrari, M. A., Roach, D. H. and Money, N. P. 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. USA 88: 11281-11284   DOI   ScienceOn
59 Xiao, J. Z., Ohshima, A., Kamakura, T, Ishyama, T and Yamaguchi, I. 1994. Extracelluar glycoproteins associated with cellular differentiation in Magnaporthe grisea. Mol. Plant-Microbe Interact. 7:639-644   DOI   ScienceOn
60 Xue, C, Park, G., Choi, W., Zheng, L., Dean, R. A. and Xu, J-R. 2002. Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell14:2107-2119   DOI   ScienceOn
61 Liu, Z. and Kolattukudy, P. K. 1999. Early expression of calrnodulin gene that precedes appressorium formation in Magnaporthe grisea is inhibited by self-inhibitors and requires surface attachment. J. Bacterial. 181:3571-3577
62 Higa, A., Hidaka, T., Minai, Y, Matsuoka, Y. and Haga, M. 2001. Active oxygen radicals induce peroxidase activity in rice blade tissues. Biosci. Biotechnol. Biochem. 65: 1852-1855   DOI   ScienceOn
63 Basse, C. W., Stumpferl, S. and Kahmann, R. 2000. Characterization of a Ustilago maydis gene specifically induced during the biotrophic phase: evidence for negative as well as positive regulation. Mol. Cell. Biol. 20:329-339   DOI   ScienceOn
64 Dickman, M. B. and Yarden, O. 1999. Serine/threonine protein kinases and phosphatases in filamentous fungi. Fungal Genet. BioI. 26:99-117   DOI   ScienceOn
65 Ewing, B. and Green, P. 1998. Base-calling of automated sequencer traces using phred. ll. Error probabilities. Genome Res. 8: 186-194   DOI
66 Mitchell, T. K. and Dean, R. A 1995. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenicity by the rice blast pathogen Magnaporthe grisea. Plant Cell 7: 1869-1878   DOI   ScienceOn
67 Birch, P. R. J., Avrova, A. O., Duncan, J. M., Lyon, G. D. and Toth, R L. 1999. Isolation of potato genes that are induced during an early stage of the hypersensitive response to Phytophthora infestans. Mol. Plant-Microbe Interact. 12:356-61   DOI   ScienceOn
68 Dixon, K. P., Xu, J. R., Smimoff, N. and Talbot, N. J. 1999. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:2045-2058   DOI   ScienceOn
69 Motoyama, T., Imanishi, K. and Yamaguchi, I. 1998. cDNA cloning, expression, and mutagenesis of scytalone dehydratase needed for pathogenicity of the rice blast fungus, Pyricularia oryzae. Biosci. Biotechnol. Biochem. 62:564-566   DOI   ScienceOn
70 Ono, E., Wong, H. L., Kawasaki, T, Hasegawa, M., Kodama, O. and Shimamoto, K. 200 I. Essential role of the small GTPase Rae in disease resistance of rice. Proc. Natl. Acad. Sci. USA 98:759-764   DOI   ScienceOn
71 Kim, S., Ahn, I-P. and Lee, Y-H. 2001. Analysis of genes expressed during rice-Magnaporthe grisea interactions. Mol. Plant-Microbe Interact. 14: 340-1346
72 Cohen, J. 1997. The genomics gamble. Science 275:767-772   DOI   PUBMED   ScienceOn
73 Deising, H., Rauscher, M., Haug, M. and Heiler, S. 1995. Differentiation and cell wall degrading enzymes in the obligately biotrophic rust fungus Uromyces viciae-fabae. Can. J. Bot. 73:S624-S631   DOI   ScienceOn
74 Gordon, D., Abajian, C. and Green, P. 1998. Consed: a graphical tool for sequence finishing. Genome Res. 8:175-185   DOI   ScienceOn
75 Keon, J., Bailey, A. and Hargreaves, J. 2000. A group of expressed cDNA sequences from the wheat fungal leaf blotch pathogen, Mycophaerella graminicola (Septoria triticii. Fungal Genet. Biol. 29: 118-133   DOI   ScienceOn
76 Qutob, D., Hraber, P. T., Sobral, B. W. S. and Gijzen, M. 2000. Comparative analysis of expressed sequences in Phytophthora sojae. Plant Physiol. 123:243-253   DOI   ScienceOn
77 Shi, Z., Christian, D. and Leung, H. 1998. Interactions between spore morphogenetic mutations affect cell types, sporulation, and pathogenesis in Magnaporthe grisea. Mol. Plant-Microbe Interact. II: 199-207
78 Yoder, O. C. and Turgeon, B. G. 2001. Fungal genomics and pathogenicity. Curro Opinion Plant Biol. 4:315-321   DOI   ScienceOn
79 DeZwaan, T. M., Carroll, A. M., Valent, B. and Sweigard, J. A. 1999. Magnaporthe grisea Pthl1p is a novel plasma membrane protein that mediates appressorium formation differentiation in response to inductive substrate cues. Plant Cell 11: 2013-2030   DOI   ScienceOn
80 Hahn, M. and Mendgen, K. 1997. Characterization of in plantainduced rust genes isolated from a haustorium-specific cDNA library. Mol. Plant-Microbe Interact. 10:427-437   DOI   ScienceOn
81 Pieterse, C. M. J., Verbakel, H. M., Spaans, J. H., Davidse, L. C. and Govers, F. 1993. Increased expression of the calmodulin gene of the late blight fungus Phytophthora infestans during pathogenesis on potato. Mol. Plant-Microbe Interact. 6: 164-172   DOI   ScienceOn
82 Bell, A. A. and Wheeler, M. H. 1986. Biosynthesis and functions of fungal melanins. Annu. Rev. Phytopathol. 24:411-451   DOI   ScienceOn
83 Thomas, S. W., Rasmussen, S. W., Glaring, M. A, Rouster, J. A, Christiansen, S. K. and Oliver, R. P. 2001 Gene identification in the obligate fungal pathogen Blumeria graminis by expressed sequence tag analysis. Fungal Genet. Bioi. 33: 195-211   DOI   ScienceOn