• 제목/요약/키워드: global plasticity

검색결과 59건 처리시간 0.021초

On the use of numerical models for validation of high frequency based damage detection methodologies

  • Aguirre, Diego A.;Montejo, Luis A.
    • Structural Monitoring and Maintenance
    • /
    • 제2권4호
    • /
    • pp.383-397
    • /
    • 2015
  • This article identifies and addresses current limitations on the use of numerical models for validation and/or calibration of damage detection methodologies that are based on the analysis of the high frequency response of the structure to identify the occurrence of abrupt anomalies. Distributed-plasticity non-linear fiber-based models in combination with experimental data from a full-scale reinforced concrete column test are used to point out current modeling techniques limitations. It was found that the numerical model was capable of reproducing the global and local response of the structure at a wide range of inelastic demands, including the occurrences of rebar ruptures. However, when abrupt sudden damage occurs, like rebar fracture, a high frequency pulse is detected in the accelerations recorded in the structure that the numerical model is incapable of reproducing. Since the occurrence of such pulse is fundamental on the detection of damage, it is proposed to add this effect to the simulated response before it is used for validation purposes.

Performance of R/C Bridge Piers under Seismic Loads

  • Kang, Hong-Duk;Kang, Young-Jong;Yoon, Young-Soo
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.35-46
    • /
    • 2000
  • A research program was initiated at the University of Colorado at Boulder to develop computational models that can be used for seismic risk assessments. To assess the overall performance of bridge structures including the nonlinear effects of bridge piers, the research focused on two levels of capabilities, i.e. global and local pier levels. A 3-D concrete model was used to evaluate the behavior of individual piers under combined axial, bending, and shear loadings using 3-D finite element analysis. Whereby the response curve reached the peak strength of the R/C column under the constant axial and monotonically increasing lateral loads. Experimental results on reinforced concrete bridge piers, which were obtained at the University of California at San Diego were used to validate the seismic performance of bridge piers at the two levels, globa1 and local.

  • PDF

금형산업의 현재와 미래 (The Present and the Future for Dies and Molds Industry in Korea)

  • 허영무;강정진;신광호;이영훈
    • 소성∙가공
    • /
    • 제12권5호
    • /
    • pp.421-432
    • /
    • 2003
  • The dies & molds are a very economical production tool and a high value-added product because of its mass production capability compared to other production methods. Due to the very stiff international competitiveness, the industries meet many obstacles. For the promotion of the industry, the status and the international trends of the industry are measured. The vision and strategy are driven. In Korea, large portion of dies and molds are still low value-added and make large number of tools. In order to advance this industry to the high-tech area and gain competitiveness in the global marketplaces, effective means of resource investment and strategy should be properly provided.

On the local stability condition in the planar beam finite element

  • Planinc, Igor;Saje, Miran;Cas, Bojan
    • Structural Engineering and Mechanics
    • /
    • 제12권5호
    • /
    • pp.507-526
    • /
    • 2001
  • In standard finite element algorithms, the local stability conditions are not accounted for in the formulation of the tangent stiffness matrix. As a result, the loss of the local stability is not adequately related to the onset of the global instability. The phenomenon typically arises with material-type localizations, such as shear bands and plastic hinges. This paper addresses the problem in the context of the planar, finite-strain, rate-independent, materially non-linear beam theory, although the proposed technology is in principle not limited to beam structures. A weak formulation of Reissner's finite-strain beam theory is first presented, where the pseudocurvature of the deformed axis is the only unknown function. We further derive the local stability conditions for the large deformation case, and suggest various possible combinations of the interpolation and numerical integration schemes that trigger the simultaneous loss of the local and global instabilities of a statically determined beam. For practical applications, we advice on a procedure that uses a special numerical integration rule, where interpolation nodes and integration points are equal in number, but not in locations, except for the point of the local instability, where the interpolation node and the integration point coalesce. Provided that the point of instability is an end-point of the beam-a condition often met in engineering practice-the procedure simplifies substantially; one of such algorithms uses the combination of the Lagrangian interpolation and Lobatto's integration. The present paper uses the Galerkin finite element discretization, but a conceptually similar technology could be extended to other discretization methods.

알루미늄 판재의 성형성 향상을 위한 적외선 국부 열처리법의 곡선형태 적용에 관한 연구 (A Study on the Infrared Local Heat Treatment of Curved Line for Aluminum Alloy Sheet)

  • 이은호;양동열
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.87-92
    • /
    • 2018
  • Auto industries have tried to employ lightweight alloys to improve the fuel efficiency of manufactured vehicles, as the environmental concern becomes an important issue. Even though the aluminum alloy is one of the most appropriate lightweight alloys for auto parts, the low formability of an aluminum alloy has been an obstacle to its application. In order to resolve the low formability problem, a recent study (Lee et al., 2017 [1]) showed that the infrared (IR) local heat treatment can improve the formability with a reduction of heating energy. However, the aforementioned study was limited to only a linear line heating. Since many of the available auto parts as applicable to vehicle manufacturing have a curved line shape, the heating experiments for a curved line should be studied. The possibility of building IR lamps having complex shapes is an advantage of the IR lamp, since it can control the heating shape. This work conducted the IR local heat treatment for the curved line. The experimental results show that the IR local heat treatment can improve the formability of the aluminum alloy for curved line. Additionally, it is shown that the IR local heat treatment also reduces the heating energy when it is compared with the furnace heating which heats a blank as a whole. A numerical simulation with a stress-based forming limit diagram also supports the experimental results.

유한요소법과 최적설계기법을 활용한 히트싱크 콜드 플레이트 최적 설계 (Optimized Design of a Cold Plate Heat Sink using FEM and Optimization)

  • 홍석무;서형준;김종문;심재원;황지훈
    • 소성∙가공
    • /
    • 제23권7호
    • /
    • pp.419-424
    • /
    • 2014
  • In order to improve efficiency, an outdoor unit using a refrigerant cooling method is designed into many air conditioner systems. The heat exchanger is composed of a Cu tube and an plate. The optimal design for the cold plate is very important because the efficiency of the heat transfer depends on the contact area between the Cu tube and the cold plate. The current study focused on the design of the cold plate to obtain a uniform contact between the Cu tube and the cold plate. Both FE(finite element) analysis and optimization were used in the design. The contact area between the tube and plate was predicted and improved by 16% through the press forming simulations. The springback after press forming was also reduced when the optimized design parameters were used. To verify the validity of the optimal cold plate design, a verification test was conducted. As a result, the performance of the heat exchanger improved by 34% when compared to benchmarked products.

Crash analysis of military aircraft on nuclear containment

  • Sadique, M.R.;Iqbal, M.A.;Bhargava, P.
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.73-87
    • /
    • 2015
  • In case of aircraft impact on nuclear containment structures, the initial kinetic energy of the aircraft is transferred and absorbed by the outer containment, may causing either complete or partial failure of containment structure. In the present study safety analysis of BWR Mark III type containment has been performed. The total height of containment is 67 m. It has a circular wall with monolithic dome of 21m diameter. Crash analysis has been performed for fighter jet Phantom F4. A normal hit at the crown of containment dome has been considered. Numerical simulations have been carried out using finite element code ABAQUS/Explicit. Concrete Damage Plasticity model have been incorporated to simulate the behaviour of concrete at high strain rate, while Johnson-Cook elasto-visco model of ductile metals have been used for steel reinforcement. Maximum deformation in the containment building has reported as 33.35 mm against crash of Phantom F4. Deformations in concrete and reinforcements have been localised to the impact region. Moreover, no significant global damage has been observed in structure. It may be concluded from the present study that at higher velocity of aircraft perforation of the structure may happen.

Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure

  • Di Ludovico, M.;Balsamo, A.;Prota, A.;Manfredi, G.
    • Structural Engineering and Mechanics
    • /
    • 제28권6호
    • /
    • pp.727-747
    • /
    • 2008
  • In the framework of the SPEAR (Seismic PErformance Assessment and Rehabilitation) research Project, an under-designed three storey RC frame structure, designed to sustain only gravity loads, was subjected, in three different configurations 'as-built', Fiber Reinforced Polymer (FRP) retrofitted and rehabilitated by reinforced concrete (RC) jacketing, to a series of bi-directional pseudodynamic (PsD) tests under different values of peak ground acceleration (PGA) (from a minimum of 0.20g to a maximum of 0.30g). The seismic deficiencies exhibited by the 'as-built' structure after the test at PGA level of 0.20g were confirmed by a post - test assessment of the structural seismic capacity performed by a nonlinear static pushover analysis implemented on the structure lumped plasticity model. To improve the seismic performance of the 'as-built' structure', two rehabilitation interventions by using either FRP laminates or RC jacketing were designed. Assumptions for the analytical modeling, design criteria and calculation procedures along with local and global intervention measures and their installation details are herein presented and discussed. Nonlinear static pushover analyses for the assessment of the theoretical seismic capacity of the structure in each retrofitted configuration were performed and compared with the experimental outcomes.

Investigation of elasto-plastic seismic response analysis method for complex steel bridges

  • Tang, Zhanzhan;Xie, Xu;Wang, Yan;Wang, Junzhe
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.333-347
    • /
    • 2014
  • Multi-scale model can take both computational efficiency and accuracy into consideration when it is used to conduct elasto-plastic seismic response analysis for complex steel bridges. This paper proposed a method based on pushover analysis of member sharing the same section pattern to verify the accuracy of multi-scale model. A deck-through type steel arch bridge with a span length of 200m was employed for seismic response analysis using multi-scale model and fiber model respectively, the validity and necessity of elasto-plastic seismic analysis for steel bridge by multi-scale model was then verified. The results show that the convergence of load-displacement curves obtained from pushover analysis for members having the same section pattern can be used as a proof of the accuracy of multi-scale model. It is noted that the computational precision of multi-scale model can be guaranteed when length of shell element segment is 1.40 times longer than the width of section where was in compression status. Fiber model can only be used for the predictions of the global deformations and the approximate positions of plastic areas on steel structures. However, it cannot give exact prediction on the distribution of plastic areas and the degree of the plasticity.

롤 본딩된 Ti/Al/Ti 3-ply 다층금속 판재의 접합강도 향상을 위한 최적 후열처리 조건 도출 (Optimal Post Heat-treatment Conditions for Improving Bonding Strength of Roll-bonded 3-ply Ti/Al/Ti Sheets)

  • 김민호;봉혁종;김지훈;이광석
    • 소성∙가공
    • /
    • 제31권4호
    • /
    • pp.179-185
    • /
    • 2022
  • The influence of post-roll bonding heat treatment conditions such as temperature and time on the variation in the diffusion layer, generated at the bonding interface and the subsequent mechanical properties of the roll-bonded Ti grade 1/Al1050/Ti grade 1 sheets, was systematically investigated. The intermetallic compound (IMC) phase generated by post heat treatment conditions adopted in this study was obviously indexed as monolithic TiAl3. Whereas the thickness of IMC layer generated by annealing at 500 ℃ was approximately 100 nm scale, it drastically increased above 1.5 ㎛ when annealed at 600 ℃. Uniaxial tensile and peel tests were then performed to compare mechanical properties. As a result, the bonding strength drastically increased above 7.9 N/mm by annealing at 600 ℃, which implies that proper annealing condition was a prerequisite, to improving interface bonding strength as well as global elongation properties for Ti/Al/Ti 3-ply sheet.