• 제목/요약/키워드: global optimization

검색결과 1,110건 처리시간 0.028초

다목적 유전알고리즘을 이용한 익형의 전역최적설계 (Global Shape Optimization of Airfoil Using Multi-objective Genetic Algorithm)

  • 이주희;이상환;박경우
    • 대한기계학회논문집B
    • /
    • 제29권10호
    • /
    • pp.1163-1171
    • /
    • 2005
  • The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, front leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the . reduction of the drag furce, improves its drag to $13\%$ and lift-drag ratio to $2\%$. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to $61\%$, while sustaining its drag force, compared to those of the baseline model.

전술 백본망에서 부하 분산을 위한 다중 경로 지역 최적화 기법 (A Multi-path Routing Mechanism with Local Optimization for Load Balancing in the Tactical Backbone Network)

  • 김용신;김영한
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1145-1151
    • /
    • 2014
  • 본 논문에서는 전술 백본망에서 부하 분산을 위한 다중 경로 지역 최적화 기법을 제안하였다. 제안된 기법은 라우팅 메트릭을 전역 메트릭과 지역 메트릭으로 구분하여 관리한다. 전역 메트릭은 라우팅 프로토콜을 통해 다른 라우터들에게 전파되며 루프 방지가 보장되는 다중 경로 구성에 사용되고, 지역 메트릭은 링크 사용율을 반영하여 링크 과부하 발생시 우회 경로를 탐색하는 용도로 활용되며 각 라우터 내에서만 관리된다. 모의 실험을 통해 다중 경로 지역 최적화 기법 적용시 사용자 트래픽이 효과적으로 가용 링크들을 통해 분산되는 것을 확인하였다.

Bicriteria optimal design of open cross sections of cold-formed thin-walled beams

  • Ostwald, M.;Magnucki, K.;Rodak, M.
    • Steel and Composite Structures
    • /
    • 제7권1호
    • /
    • pp.53-70
    • /
    • 2007
  • This paper presents a analysis of the problem of optimal design of the beams with two I-type cross section shapes. These types of beams are simply supported and subject to pure bending. The strength and stability conditions were formulated and analytically solved in the form of mathematical equations. Both global and selected types of local stability forms were taken into account. The optimization problem was defined as bicriteria. The cross section area of the beam is the first objective function, while the deflection of the beam is the second. The geometric parameters of cross section were selected as the design variables. The set of constraints includes global and local stability conditions, the strength condition, and technological and constructional requirements in the form of geometric relations. The optimization problem was formulated and solved with the help of the Pareto concept of optimality. During the numerical calculations a set of optimal compromise solutions was generated. The numerical procedures include discrete and continuous sets of the design variables. Results of numerical analysis are presented in the form of tables, cross section outlines and diagrams. Results are discussed at the end of the work. These results may be useful for designers in optimal designing of thin-walled beams, increasing information required in the decision-making procedure.

분류시스템을 이용한 다항식기반 반응표면 근사화 모델링 (Development of Polynomial Based Response Surface Approximations Using Classifier Systems)

  • 이종수
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.127-135
    • /
    • 2000
  • Emergent computing paradigms such as genetic algorithms have found increased use in problems in engineering design. These computational tools have been shown to be applicable in the solution of generically difficult design optimization problems characterized by nonconvexities in the design space and the presence of discrete and integer design variables. Another aspect of these computational paradigms that have been lumped under the bread subject category of soft computing, is the domain of artificial intelligence, knowledge-based expert system, and machine learning. The paper explores a machine learning paradigm referred to as teaming classifier systems to construct the high-quality global function approximations between the design variables and a response function for subsequent use in design optimization. A classifier system is a machine teaming system which learns syntactically simple string rules, called classifiers for guiding the system's performance in an arbitrary environment. The capability of a learning classifier system facilitates the adaptive selection of the optimal number of training data according to the noise and multimodality in the design space of interest. The present study used the polynomial based response surface as global function approximation tools and showed its effectiveness in the improvement on the approximation performance.

  • PDF

FPGA 상에서 OpenCL을 이용한 병렬 문자열 매칭 구현과 최적화 방향 (Parallel String Matching and Optimization Using OpenCL on FPGA)

  • 윤진명;최강일;김현진
    • 전기학회논문지
    • /
    • 제66권1호
    • /
    • pp.100-106
    • /
    • 2017
  • In this paper, we propose a parallel optimization method of Aho-Corasick (AC) algorithm and Parallel Failureless Aho-Corasick (PFAC) algorithm using Open Computing Language (OpenCL) on Field Programmable Gate Array (FPGA). The low throughput of string matching engine causes the performance degradation of network process. Recently, many researchers have studied the string matching engine using parallel computing. FPGA's vendors offer a parallel computing platform using OpenCL. In this paper, we apply the AC and PFAC algorithm on DE1-SoC board with Cyclone V FPGA, where the optimization that considers FPGA architecture is performed. Experiments are performed considering global id, local id, local memory, and loop unrolling optimizations using PFAC algorithm. The performance improvement using loop unrolling is 129 times greater than AC algorithm that not adopt loop unrolling. The performance improvements using loop unrolling are 1.1, 0.2, and 1.5 times greater than those using global id, local id, and local memory optimizations mentioned above.

유전자 알고리즘에 의한 드릴싱 머신의 설계 최적화 연구 (The Optimization of Sizing and Topology Design for Drilling Machine by Genetic Algorithms)

  • 백운태;성활경
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.24-29
    • /
    • 1997
  • Recently, Genetic Algorithm(GA), which is a stochastic direct search strategy that mimics the process of genetic evolution, is widely adapted into a search procedure for structural optimization. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA is very simple in their algorithms and there is no need of continuity of functions(or functionals) any more in GA. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher porbability of convergence to global optimum compared to traditional techniques which take one-point search method. The methods consist of three genetics opera- tions named selection, crossover and mutation. In this study, a method of finding the omtimum size and topology of drilling machine is proposed by using the GA, For rapid converge to optimum, elitist survival model,roulette wheel selection with limited candidates, and multi-point shuffle cross-over method are adapted. And pseudo object function, which is the combined form of object function and penalty function, is used to include constraints into fitness function. GA shows good results of weight reducing effect and convergency in optimal design of drilling machine.

  • PDF

재시동 조건을 이용한 유전자 알고리즘의 성능향상에 관한 연구 (A Study on Improvement of Genetic Algorithm Operation Using the Restarting Strategy)

  • 최정묵;이진식;임오강
    • 한국전산구조공학회논문집
    • /
    • 제15권2호
    • /
    • pp.305-313
    • /
    • 2002
  • 유전자 알고리즘은 적자 생존과 자연친화의 유전이론을 기초로 하여 이루어진 탐색기법이다. 유전자 알고리즘은 미분 정보 등과 같은 부가적인 정보없이 수렴함으로 전역적 최적값을 탐색하는 강인한 탐색기법으로 알려져 있다. 유전자 알고리즘은 연속형의 설계변수를 가지는 문제에서 세대가 계속 진행되어도 목적함수의 개선이 없이 조기에 수렴하는 경우가 있다. 또한 전역적 최적값 근처에서 수렴하지 못하고 목적함수값이 진동하여 수렴속도가 떨어지는 단점이 있다. 본 연구에서는 위와 같은 유전자 알고리즘의 단점을 보완하고자 재시동 조건과 엘리트 보존방법을 제안하였다. 수정된 유전자 알고리즘의 유용성을 검증하기 위해 3부재 트러스와 평면응력 외팔보에 적용하여 수렴 속도의 향상을 확인하였다.

Global sensitivity analysis improvement of rotor-bearing system based on the Genetic Based Latine Hypercube Sampling (GBLHS) method

  • Fatehi, Mohammad Reza;Ghanbarzadeh, Afshin;Moradi, Shapour;Hajnayeb, Ali
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.549-561
    • /
    • 2018
  • Sobol method is applied as a powerful variance decomposition technique in the field of global sensitivity analysis (GSA). The paper is devoted to increase convergence speed of the extracted Sobol indices using a new proposed sampling technique called genetic based Latine hypercube sampling (GBLHS). This technique is indeed an improved version of restricted Latine hypercube sampling (LHS) and the optimization algorithm is inspired from genetic algorithm in a new approach. The new approach is based on the optimization of minimax value of LHS arrays using manipulation of array indices as chromosomes in genetic algorithm. The improved Sobol method is implemented to perform factor prioritization and fixing of an uncertain comprehensive high speed rotor-bearing system. The finite element method is employed for rotor-bearing modeling by considering Eshleman-Eubanks assumption and interaction of axial force on the rotor whirling behavior. The performance of the GBLHS technique are compared with the Monte Carlo Simulation (MCS), LHS and Optimized LHS (Minimax. criteria). Comparison of the GBLHS with other techniques demonstrates its capability for increasing convergence speed of the sensitivity indices and improving computational time of the GSA.

Hull-form optimization of KSUEZMAX to enhance resistance performance

  • Park, Jong-Heon;Choi, Jung-Eun;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.100-114
    • /
    • 2015
  • This paper deploys optimization techniques to obtain the optimum hull form of KSUEZMAX at the conditions of full-load draft and design speed. The processes have been carried out using a RaPID-HOP program. The bow and the stern hull-forms are optimized separately without altering neither, and the resulting versions of the two are then combined. Objective functions are the minimum values of wave-making and viscous pressure resistance coefficients for the bow and stern. Parametric modification functions for the bow hull-form variation are SAC shape, section shape (U-V type, DLWL type), bulb shape (bulb height and size); and those for the stern are SAC and section shape (U-V type, DLWL type). WAVIS version 1.3 code is used for the potential and the viscous-flow solver. Prior to the optimization, a parametric study has been conducted to observe the effects of design parameters on the objective functions. SQP has been applied for the optimization algorithm. The model tests have been conducted at a towing tank to evaluate the resistance performance of the optimized hull-form. It has been noted that the optimized hull-form brings 2.4% and 6.8% reduction in total and residual resistance coefficients compared to those of the original hull-form. The propulsive efficiency increases by 2.0% and the delivered power is reduced 3.7%, whereas the propeller rotating speed increases slightly by 0.41 rpm.

성능향상을 위하여 개체속력을 적용한 박테리아 협동 최적화 (Bacteria Cooperative Optimization Applying Individual's Speed for Performance Improvements)

  • 정성훈
    • 전자공학회논문지CI
    • /
    • 제47권3호
    • /
    • pp.67-75
    • /
    • 2010
  • 본 논문에서는 성능향상을 위하여 개체속력 개념을 적용한 박테리아 협동 최적화 방법을 제안한다. 기존의 박테리아 협동 최적화 방법에서는 개체별로 속력이 일정해 모든 개체가 같은 시간에 똑 같은 거리를 움직인다. 이러한 방법은 개체의 적합도가 좋은 개체나 나쁜 개체가 같은 속력으로 움직임으로서 효과적으로 최적 해를 찾아가지 못하는 문제점이 있었다. 이러한 문제점을 개선하고자 개체의 적합도를 이용하여 개체별 등급을 매기고 등급에 따라서 한 번에 이동할 수 있는 거리를 다르게 하는 속력 개념을 적용하였다. 즉 적합도가 낮은 개체는 적합도가 높은 영역으로 빨리 이동하기위하여 속력을 높이고 적합도가 높은 개체는 주변에 최적 해가 있을 가능성이 있으므로 속력을 낮게 유지하였다. 4개의 함수 최적화 문제에 적용해본 결과 속력개념을 적용하지 않은 방법에 대하여 상당한 성능향상이 있음을 보았다. 특히 성능향상을 위하여 기존에 도입했던 등급별 교체방법보다도 더 좋은 성능을 보였다. 이는 박테리아 협동 최적화의 성능을 향상시키기 위한 방법으로 속력개념을 적용하는 것이 매우 유용함을 보여준다.