• Title/Summary/Keyword: global networks

Search Result 881, Processing Time 0.032 seconds

Energy-efficient Data Dissemination Scheme via Sink Location Service in Wireless Sensor Networks (무선 센서망에서 위치정보 선제공 기법을 이용한 에너지 효율적인 데이타 전달방안)

  • Yu, Fu-Cai;Choi, Young-Hwan;Park, Soo-Chang;Lee, Eui-Sin;Tian, Ye;Park, Ho-Sung;Kim, Sang-Ha
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10d
    • /
    • pp.240-243
    • /
    • 2007
  • Geographic routing has been considered as an efficient simple, and scalable routing protocol for wireless sensor networks since it exploits pure location information instead of global topology information to route data packets. Geographic routing requires the sources nodes to be aware of the location of the sinks. In this paper, we propose a scheme named Sink Location Service for geographic routing in wireless Sensor Networks, in which the source nodes can get and update the location of sinks with low overhead. In this scheme, a source and a sink send data announcement and query messages along two paths respectively by geographic routing. The node located on the crossing point of the two paths informs the source about the location of the sink. Then the source can send data packet to the sink by geographic routing. How to guarantee that these two paths have at least one crossing point in any irregular profile of sensor network is the challenge of this paper.

  • PDF

The long-term agricultural weather forcast methods using machine learning and GloSea5 : on the cultivation zone of Chinese cabbage. (기계학습과 GloSea5를 이용한 장기 농업기상 예측 : 고랭지배추 재배 지역을 중심으로)

  • Kim, Junseok;Yang, Miyeon;Yoon, Sanghoo
    • Journal of Digital Convergence
    • /
    • v.18 no.4
    • /
    • pp.243-250
    • /
    • 2020
  • Systematic farming can be planned and managed if long-term agricultural weather information of the plantation is available. Because the greatest risk factor for crop cultivation is the weather. In this study, a method for long-term predicting of agricultural weather using the GloSea5 and machine learning is presented for the cultivation of Chinese cabbage. The GloSea5 is a long-term weather forecast that is available up to 240 days. The deep neural networks and the spatial randomforest were considered as the method of machine learning. The longterm prediction performance of the deep neural networks was slightly better than the spatial randomforest in the sense of root mean squared error and mean absolute error. However, the spatial randomforest has the advantage of predicting temperatures with a global model, which reduces the computation time.

Spatial Features and Implications of Subcontracting Networks by a Large Firm: The Case of the Display Division of LG Electronics in Kumi, Korea (대기업 하청거래 네트워크의 공간적 특성 및 함의: LG전자 디스플레이 사업본부를 사례로)

  • 이철우
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.19-35
    • /
    • 2001
  • This paper is concerned with the relationships between large firms with global reaches in their markets and subcontracting firms, mostly small and medium-sized firms. It then attempts to focus in more detail on the dynamic relational dimensions between the two. In doing so, we draw upon the secondary data and the results of interviewing survey with some senior managers. The empirical study shows that the localisation of subcontracting networks have been increasingly reinforced thanks to the increasing tendency of vertical disintegration by LC. However, it is identified that there is a tendency that local subcontractors are specialised in producing relatively low value-added and low technology-intensive electronic parts/components. Based on these results, the author suggests the implications of regional economic development in the context of innovation and learning.

  • PDF

Principal Feature Extraction on Image Data Using Neural Networks of Learning Algorithm Based on Steepest Descent and Dynamic tunneling (기울기하강과 동적터널링에 기반을 둔 학습알고리즘의 신경망을 이용한 영상데이터의 주요특징추출)

  • Jo, Yong-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.5
    • /
    • pp.1393-1402
    • /
    • 1999
  • This paper proposes an efficient principal feature extraction of the image data using neural networks of a new learning algorithm. The proposed learning algorithm is a backpropagation(BP) algorithm based on the steepest descent and dynamic tunneling. The BP algorithm based on the steepest descent is applied for high-speed optimization, and the BP algorithm based on the dynamic tunneling is also applied for global optimization. Converging to the local minimum by the BP algorithm of steepest descent, the new initial weights for escaping the local minimum is estimated by the BP algorithm of dynamic tunneling. The proposed algorithm has been applied to the 3 image data of 12${\times}$12pixels and the Lenna image of 128${\times}$128 pixels respectively. The simulation results shows that the proposed algorithm has better performances of the convergence and the feature extraction, in comparison with those using the Sanger method and the Foldiak method for single-layer neural networks and the BP algorithm for multilayer neural network.

  • PDF

Spatial Conceptualization of Transnational Migration : Focusing on Place, Territory, Networks, and Scale (초국가적 이주와 정착을 바라보는 공간적 관점에 대한 연구 : 장소, 영역, 네트워크, 스케일의 4가지 공간적 차원을 중심으로)

  • Park, Bae-Gyoon
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.5
    • /
    • pp.616-634
    • /
    • 2009
  • Criticizing the existing social science approaches to transnational migration for their ignorance of spatial perspectives and the resultant limits in the understanding of the concrete processes of international migration and settlement, this paper aims to examine how spatial perspectives and geographical epistemology can positively contribute to the understanding and conceptualization of transnational migration. In particular, it emphasizes that the processes of transnational migration cannot be solely understood in terms of 1) global capitalist restructuring and economic rationality, 2) the impacts of deterritoralized transnational networks, or 3) the operation of immigration regimes constructed at the national scale. Alternatively, this paper argues that the conceptualization of 'transnational space', which is based on the understanding of the socio-spatial dimensions - that is, place, territory, scale and networks - that affect the processes of transnational migration, could significantly contribute to the understanding of the transnational migration.

  • PDF

Comparison Studies of Hybrid and Non-hybrid Forecasting Models for Seasonal and Trend Time Series Data (트렌드와 계절성을 가진 시계열에 대한 순수 모형과 하이브리드 모형의 비교 연구)

  • Jeong, Chulwoo;Kim, Myung Suk
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • In this article, several types of hybrid forecasting models are suggested. In particular, hybrid models using the generalized additive model (GAM) are newly suggested as an alternative to those using neural networks (NN). The prediction performances of various hybrid and non-hybrid models are evaluated using simulated time series data. Five different types of seasonal time series data related to an additive or multiplicative trend are generated over different levels of noise, and applied to the forecasting evaluation. For the simulated data with only seasonality, the autoregressive (AR) model and the hybrid AR-AR model performed equivalently very well. On the other hand, if the time series data employed a trend, the SARIMA model and some hybrid SARIMA models equivalently outperformed the others. In the comparison of GAMs and NNs, regarding the seasonal additive trend data, the SARIMA-GAM evenly performed well across the full range of noise variation, whereas the SARIMA-NN showed good performance only when the noise level was trivial.

Wireless operational modal analysis of a multi-span prestressed concrete bridge for structural identification

  • Whelan, Matthew J.;Gangone, Michael V.;Janoyan, Kerop D.;Hoult, Neil A.;Middleton, Campbell R.;Soga, Kenichi
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.579-593
    • /
    • 2010
  • Low-power radio frequency (RF) chip transceiver technology and the associated structural health monitoring platforms have matured recently to enable high-rate, lossless transmission of measurement data across large-scale sensor networks. The intrinsic value of these advanced capabilities is the allowance for high-quality, rapid operational modal analysis of in-service structures using distributed accelerometers to experimentally characterize the dynamic response. From the analysis afforded through these dynamic data sets, structural identification techniques can then be utilized to develop a well calibrated finite element (FE) model of the structure for baseline development, extended analytical structural evaluation, and load response assessment. This paper presents a case study in which operational modal analysis is performed on a three-span prestressed reinforced concrete bridge using a wireless sensor network. The low-power wireless platform deployed supported a high-rate, lossless transmission protocol enabling real-time remote acquisition of the vibration response as recorded by twenty-nine accelerometers at a 256 Sps sampling rate. Several instrumentation layouts were utilized to assess the global multi-span response using a stationary sensor array as well as the spatially refined response of a single span using roving sensors and reference-based techniques. Subsequent structural identification using FE modeling and iterative updating through comparison with the experimental analysis is then documented to demonstrate the inherent value in dynamic response measurement across structural systems using high-rate wireless sensor networks.

A Framework of Resource Provisioning and Customized Energy-Efficiency Optimization in Virtualized Small Cell Networks

  • Sun, Guolin;Clement, Addo Prince;Boateng, Gordon Owusu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5701-5722
    • /
    • 2018
  • The continuous increase in the cost of energy production and concerns for environmental sustainability are leading research communities, governments and industries to amass efforts to reduce energy consumption and global $CO_2$ footprint. Players in the information and communication industry are keen on reducing the operational expenditures (OpEx) and maintaining the profitability of cellular networks. Meanwhile, network virtualization has been proposed in this regard as the main enabler for 5G mobile cellular networks. In this paper, we propose a generic framework of slice resource provisioning and customized physical resource allocation for energy-efficiency and quality of service optimization. In resource slicing, we consider user demand and population resources provisioning scheme aiming to satisfy quality of service (QoS). In customized physical resource allocation, we formulate this problem with an integer non-linear programming model, which is solved by a heuristic algorithm based on minimum vertex coverage. The proposed algorithm is compared with the existing approaches, without consideration of slice resource constraints via system-level simulations. From the perspective of infrastructure providers, traffic is scheduled over a limited number of active small-cell base stations (sc-BSs) that significantly reduce the system energy consumption and improve the system's spectral efficiency. From the perspective of virtual network operators and mobile users, the proposed approach can guarantee QoS for mobile users and improve user satisfaction.

Exploratory study on the Spam Detection of the Online Social Network based on Graph Properties (그래프 속성을 이용한 온라인 소셜 네트워크 스팸 탐지 동향 분석)

  • Jeong, Sihyun;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.567-575
    • /
    • 2020
  • As online social networks are used as a critical medium for modern people's information sharing and relationship, their users are increasing rapidly every year. This not only increases usage but also surpasses the existing media in terms of information credibility. Therefore, emerging marketing strategies are deliberately attacking social networks. As a result, public opinion, which should be formed naturally, is artificially formed by online attacks, and many people trust it. Therefore, many studies have been conducted to detect agents attacking online social networks. In this paper, we analyze the trends of researches attempting to detect such online social network attackers, focusing on researches using social network graph characteristics. While the existing content-based techniques may represent classification errors due to privacy infringement and changes in attack strategies, the graph-based method proposes a more robust detection method using attacker patterns.

Segmentation of Mammography Breast Images using Automatic Segmen Adversarial Network with Unet Neural Networks

  • Suriya Priyadharsini.M;J.G.R Sathiaseelan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.151-160
    • /
    • 2023
  • Breast cancer is the most dangerous and deadly form of cancer. Initial detection of breast cancer can significantly improve treatment effectiveness. The second most common cancer among Indian women in rural areas. Early detection of symptoms and signs is the most important technique to effectively treat breast cancer, as it enhances the odds of receiving an earlier, more specialist care. As a result, it has the possible to significantly improve survival odds by delaying or entirely eliminating cancer. Mammography is a high-resolution radiography technique that is an important factor in avoiding and diagnosing cancer at an early stage. Automatic segmentation of the breast part using Mammography pictures can help reduce the area available for cancer search while also saving time and effort compared to manual segmentation. Autoencoder-like convolutional and deconvolutional neural networks (CN-DCNN) were utilised in previous studies to automatically segment the breast area in Mammography pictures. We present Automatic SegmenAN, a unique end-to-end adversarial neural network for the job of medical image segmentation, in this paper. Because image segmentation necessitates extensive, pixel-level labelling, a standard GAN's discriminator's single scalar real/fake output may be inefficient in providing steady and appropriate gradient feedback to the networks. Instead of utilising a fully convolutional neural network as the segmentor, we suggested a new adversarial critic network with a multi-scale L1 loss function to force the critic and segmentor to learn both global and local attributes that collect long- and short-range spatial relations among pixels. We demonstrate that an Automatic SegmenAN perspective is more up to date and reliable for segmentation tasks than the state-of-the-art U-net segmentation technique.