• Title/Summary/Keyword: global navigation satellite system (GNSS)

Search Result 408, Processing Time 0.021 seconds

Study on Technical Standard of Aviation GNSS for SBAS Performance Based Navigation (SBAS 성능기반 항행을 위한 항공용 GNSS 기술표준 분석 연구)

  • Park, Jae-ik;Lee, Eunsung;Heo, Moon-beom;Nam, Gi-wook
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.305-313
    • /
    • 2016
  • International Civil Aviation Organization (ICAO) has recommended the adoption of performance-based navigation (PBN), which utilizes global navigation satellite system (GNSS). As a part of efforts to adopt PBN in South Korea, preparations have been made to implement GNSS. In Oct. 2014, Korea augmentation satellite system (KASS) was officially launched for development. A set of navigation devices need to be on-board for an airplane to utilize GNSS. GNSS navigation devices are used for different phases of flights through en-route, terminal, departure, approach and a wide variety of specification standards have been proposed for GNSS navigation. In this paper, we investigate the many proposed standards for GNSS navigation devices and their interfaces. This paper can be useful for designing procedures and flight test used in KASS implementation.

Multi-GNSS Standard Point Positioning using GPS, GLONASS, BeiDou and QZSS Measurements Recorded at MKPO Reference Station in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Cho, Jung Ho;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.205-211
    • /
    • 2015
  • The Global Navigation Satellite System (GNSS) is undergoing dramatic changes. Nowadays, much more satellites are transmitting navigation data at more frequencies. A multi-GNSS analysis is performed to improve the positioning accuracy by processing combined observations from different GNSS. The multi-GNSS technique can improve significantly the positioning accuracy. In this paper, we present a combined Global Positioning System (GPS), the GLObal NAvigation Satellite System (GLONASS), the China Satellite Navigation System (BeiDou), and the Quasi-Zenith Satellite System (QZSS) standard point positioning (SPP) method to exploit all currently available GNSS observations at Mokpo (MKPO) station in South Korea. We also investigate the multi-GNSS data recorded at MKPO reference station. The positioning accuracy is compared with several combinations of the satellite systems. Because of the different frequencies and signal structure of the different GNSS, intersystem biases (ISB) parameters for code observations have to be estimated together with receiver clocks in multi-GNSS SPP. We also present GPS/GLONASS and GPS/BeiDou ISB values estimated by the daily average.

Performance Analysis of Navigation Algorithm for GNSS Ground Station

  • Jeong, Seong-Kyun;Park, Han-Earl;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.32-37
    • /
    • 2008
  • Global Navigation Satellite System (GNSS) is been developing in many countries. The satellite navigation system has the importance in economic and military fields. For utilizing satellite navigation system properly, the technology of GNSS Ground Station is needed. GNSS Ground Station monitors the signal of navigation satellite and analyzes navigation solution. This study deals with the navigation software for GNSS Ground Station. This paper will introduce the navigation solution algorithm for GNSS Ground Station. The navigation solution can be calculated by the code-carrier smoothing method, the Kalman-filter method, the least-square method, and the weight least square method. The performance of each navigation algorithm in this paper is presented.

  • PDF

Current Status and Development Plan of Global Navigation Satellite System (위성항법시스템 운영 현황 및 개발 계획)

  • Ha, Ji-Hyun;Chun, Se-Bum
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • In this paper, we explained status and development trend of GNSS (Global Navigation Satellite System): GPS (Global Satellite System) of US, GLONASS (Global Navigation Satellite System) of Russia, Galileo of EU, Beidou/Compass of China, and QZSS (Quasi-Zenith Satellite System) of Japan). System construction and operation status of five GNSS systems were summarized. In addition, development plan and modernization of these systems were explained.

  • PDF

Evaluation of Navigation System Performance of GPS/GLONASS/Galileo/BeiDou/QZSS System using High Performance GNSS Receiver

  • Park, Yong-Hui;Jeong, Jin-Ho;Park, Jin-Mo;Park, Sung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.333-339
    • /
    • 2022
  • The satellite navigation system was developed for the purpose of calculating the location of local users, starting with the Global Positioning System (GPS) in the 1980s. Advanced countries in the space industry are operating Global Navigation Satellite System (GNSS) that covers the entire earth, such as GPS, GLONASS, Galileo, and BeiDou, by establishing satellite navigation systems for each country. Regional Navigation Satellite Systems (RNSS) such as QZSS and NavIC are also in operation. In the early 2010s, only GPS and GLONASS could calculate location using a single system for location determination. After 2016, the EU and China also completed the establishment of GNSS such as Galileo and BeiDou. As a result, satellite navigation users can benefit from improved availability of GNSS. In addition, before Galileo and BeiDou's Full Operational Capability (FOC) declaration, they used combined navigation algorithms to calculate the user's location by adding another satellite navigation system to the GPS satellites. Recently, it may be possible to calculate a user's location for each navigation system using the resources of a single system. In this paper, we evaluated the performance of single system navigation and combined navigation solutions of GPS, GLONASS, Galileo, BeiDou and QZSS individual navigation systems using high-performance GNSS receivers.

CONCEPTUAL DESIGN OF MONITORING AND CONTROL SUBSYSTEM FOR GNSS GROUND STATION

  • Jeong, Seong-Kyun;Kim, In-Jun;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.389-396
    • /
    • 2007
  • The Global Navigation Satellite System (GNSS) becomes more important and is applied to various systems. Recently, the Galileo navigation system is being developed in Europe. Also, other countries like China, Japan and India are developing the global/regional navigation satellite system. As various global/regional navigation satellite systems are used, the navigation ground system gets more important for using the navigation system reasonably and efficiently. According to this trend, the technology of GNSS Ground Station (GGS) is developing in many fields. The one of purposes for this study is to develop the high precision receiver for GNSS sensor station and to provide ground infrastructure for better performance services on navigation system. In this study, we consider the configuration of GNSS Ground Station and analyze function of Monitoring and Control subsystem which is a part of GNSS Ground Station. We propose Monitoring and Control subsystem which contains the navigation software for GNSS Ground System to monitor and control equipments in GNSS Ground Station, to spread the applied field of navigation system, and to provide improved navigation information to user.

Ship-Borne Global Navigation Satellite System (GNSS) for Ionospheric Total Electron Content Monitoring: Preliminary Results from ISABU Experiments (선박 GNSS(Global Navigation Satellite System) 자료를 사용한 전리권 정보 산출 실험: 이사부호 초기 결과)

  • Dong-Hyo Sohn;Byung-Kyu Choi;Junseok Hong;Gyeong Mok Lee;Woo Kyoung Lee;Jong-Kyun Chung;Yosup Park
    • Journal of Space Technology and Applications
    • /
    • v.4 no.3
    • /
    • pp.199-209
    • /
    • 2024
  • In this study, we calculated total electron content (TEC) using ship-borne global navigation satellite system (GNSS) observations and validated the results by comparing the ground-based TEC. GNSS is an effective tool for monitoring the ionosphere as it allows 24-hour observations, is low cost, and is easy to install. However, most GNSS stations are located on land, which leads to a lack of data from the ocean. Therefore, we conducted an experiment collecting GNSS data in the ocean by installing GNSS observation systems aboard the research vessel 'ISABU', operated by the Korea Institute of Ocean Science and Technology. We estimated TEC using GNSS data from July 30 to August 24, 2021. From the results, we confirmed daily and latitudinal variations of TEC as expected. Additionally, we compared the results with TEC derived from nearby ground-based GNSS stations and then verified similar variations. Based on these results, we plan to research ionospheric climatology using long-term data and assess its potential for ongoing ionospheric monitoring.

Survey of Signal Design for Global Navigation Satellite Systems (GNSS 신호 설계 동향조사)

  • Jong Hyun Jeon;Jeonghang Lee;Jeongwan Kang;Sunwoo Kim;Jung-Min Joo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • In this paper, we investigate the signal design of six (USA, EU, Russia, China, Japan, and India) countries for Global Navigation Satellite Systems (GNSS). Recently, a navigation satellite system that is capable of high-precision and reliable Positioning, Navigation, Timing (PNT) services has been developed. Prior to system design, a survey of the signal design for other GNSS systems should precede to ensure compatibility and interoperability with other GNSS. The signal design includes carrier frequency, Pseudorandom Noise (PRN) code, modulation, navigation service, etc. Specifically, GNSS is allocated L1, L2, and L5 bands, with recent additions of the L6 and S bands. GNSS uses PRN code (such as Gold, Weil, etc) to distinguish satellites that transmit signals simultaneously on the same frequency band. For modulation, both Binary Phase Shift Keying (BPSK) and Binary Offset Carrier (BOC) have been widely used to avoid collision in the frequency spectrum, and alternating BOCs are adopted to distinguish pilot and data components. Through the survey of other GNSS' signal designs, we provide insights for guiding the design of new satellite navigation systems.

DGNSS-CP Performance Comparison of Each Observation Matrix Calculation Method (관측 행렬 산출 기법 별 DGNSS-CP 성능 비교)

  • Shin, Dong-hyun;Lim, Cheol-soon;Seok, Hyo-jeong;Yoon, Dong-hwan;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.433-439
    • /
    • 2016
  • Several low-cost global navigation satellite system (GNSS) receivers do not support general range-domain correction, and DGNSS-CP (differential GNSS) method had been suggested to solve this problem. It improves its position accuracy by projecting range-domain corrections to the position-domain and then differentiating the stand-alone position by the projected correction. To project the range-domain correction, line-of-sight vectors from the receiver to each satellite should be calculated. The line-of-sight vectors can be obtained from GNSS broadcast ephemeris data or satellite direction information, and this paper shows positioning performance for the two methods. Stand-alone positioning result provided from Septentrio PolaRx4 Pro receiver was used to show the difference. The satellite direction information can reduce the computing load for the DGNSS-CP by 1/15, even though its root mean square(RMS) of position error is bigger than that of ephemeris data by 0.1m.

The Status and Plan of Galileo Project (GALILEO PROJECT 추진현황 및 대응방안 연구(2))

  • Kong, Hyun-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.368-371
    • /
    • 2009
  • The GALILEO Project is to be the one and only European Global Navigation Satellite System(GNSS). The GIVE-B satellite, a second experimental GALILEO satellite was launched and started the transmission of ranging signals. GIOVE-B satellite is intended as a trueprototype of future GALILEO satellite. So I introduce the standard deviation of code multi path, signal power, antennas performance and L1-E5 group delay etc. Therefore I comprehend the current progress and tend of GALILEO Project and try to propose the national countremeasures.

  • PDF