• Title/Summary/Keyword: global flux

Search Result 243, Processing Time 0.025 seconds

A Study on the Evaluation of Surface Dose Rate of New Disposal Containers Though the Activation Evaluation of Bio-Shield Concrete Waste From Kori Unit 1

  • Kang, Gi-Woong;Kim, Rin-Ah;Do, Ho-Seok;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.133-140
    • /
    • 2021
  • This study evaluates the radioactivity of concrete waste that occurs due to large amounts of decommissioned nuclear wastes and then determines the surface dose rate when the waste is packaged in a disposal container. The radiation assessment was conducted under the presumption that impurities included in the bio-shielded concrete contain the highest amount of radioactivity among all the concrete wastes. Neutron flux was applied using the simplified model approach in a sample containing the most Co and Eu impurities, and a maximum of 9.8×104 Bq·g-1 60Co and 2.63×105 Bq·g-1 152Eu was determined. Subsequently, the surface dose rate of the container was measured assuming that the bio-shield concrete waste would be packaged in a newly developed disposal container. Results showed that most of the concrete wastes with a depth of 20 cm or higher from the concrete surface was found to have less than 1.8 mSv·hr-1 in the surface dose of the new-type disposal container. Hence, when bio-shielded concrete wastes, having the highest radioactivity, is disposed in the new disposal container, it satisfies the limit of the surface dose rate (i.e., 2 mSv·hr-1) as per global standards.

A Study on the Development of Platform-based MyData Service in Financial Industry (금융분야의 플랫폼 기반 마이데이터 서비스 개발에 관한 연구)

  • Jaeseob Choi;Sanghun Cha;Jeongil Choi
    • Journal of Information Technology Services
    • /
    • v.22 no.1
    • /
    • pp.29-42
    • /
    • 2023
  • Amid the global movement to harness individual data and boost the data economy, MyData services that utilize personal data are being implemented in earnest in the financial sector in Korea due to the government's active encouragement policy. To this end, MyData service providers must have a service system for business operators that collects and efficiently loads personal information scattered in various financial institutions with individual consent, and comprehensively analyzes and provides it. The system must not only have strict security management capabilities, but also be built in a flexible form that takes into account future data scalability and additional services. In this paper, it has been proposed to be implemented the essential functions that MyData service system must have and the core functions that can manage the entire data life cycle from data collection, distribution to disposal in the form of a platform. In addition, the strengths of the platform structure were reviewed, and the effectiveness of the platform model was examined upon application.

Anti-icing Method of Heated Walkway in Ice Class Ships: Efficiency Verification of CNT-based Surface Heating Element Method Through Numerical Analysis

  • Woo-Jin Park;Dong-Su Park;Mun-Beom Shin;Young-Kyo Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.215-224
    • /
    • 2023
  • While melting glaciers due to global warming have facilitated the development of polar routes, Arctic vessels require reliable anti-icing methods to prevent hull icing. Currently, the existing anti-icing method, i.e., the heating coil method, has disadvantages, such as disconnection and power inefficiency. Therefore, a carbon nanotube-based surface heating element method was developed to address these limitations. In this study, the numerical analysis of the surface heating element method was performed using ANSYS. The numerical analysis included conjugate heat transfer and computational fluid dynamics to consider the conduction solids and the effects of wind speed and temperature in cold environments. The numerical analysis method of the surface heating element method was validated by comparing the experimental results of the heating coil method with the numerical analysis results (under the -30 ℃ conditions). The surface heating element method demonstrated significantly higher efficiency, ranging from 56.65-80.17%, depending on the conditions compared to the heating coil method. Moreover, even under extreme environmental conditions (-45 ℃), the surface heating element method satisfied anti-icing requirements. The surface heating element method is more efficient and economical than the heating coil method. However, proper heat flux calculation for environmental conditions is required to prevent excessive design.

Emission of Green House Gases in the Agricultural Environment -1. The Cropping System and Emission of the Green House Gases-CO2, CH4, N2O)-under Different Cropping System (농작물(農作物) 재배환경(栽培環境)과 지구온난화(地球溫暖化) 원인(原因)가스 발생(發生) -1. 답전전환시(畓田轉換時) 작부체계(作付體系)와 지구온난원인기체(地球溫暖原因氣體) -이산화탄소(二酸化炭素), 메탄, 아산화질소(亞酸化窒素)- 발생(發生))

  • Lee, Sang-Kyu;Suh, Jang-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.1
    • /
    • pp.49-56
    • /
    • 1993
  • The net flux of global green house gases such as carbon dioxide($CO_2$), methane($CH_4$), and nitrous oxide($N_2O$) emitted from the rotation of paddy-upland soil during growing sesaon under different cropping system was determined. The results obtained were summarized as follows : 1. The net flux of $CO_2$ during the growing season was the highest from continuous cultivation of rice but the lowest from rotation cultivation of rice-soybean. Under the different cropping system the highst emission was from soil of continuous cultivation of rice, but the lowest from converted system. 2. The net emission of methane was the highest from the sold of continuous cultivation of rice, but the flux was remarkably decreased by differing the cropping system. 3. $N_2O$ was emitted greatly from the every two year rotation of potato-chinese cabbage and the next rank was from continuous cultivation of rice, but was decreased notably from rotation cultivation of rice-soybean and potato-chinese cabbage under rotation of paddy-upland cropping system. 4. The ratio of oxygen and carbon dioxide in the soil air was much different with glowing season, the ratio was varied with 4~10 percents for oxygen and 1~22 percents for carbon dioxide. The ratio of carbon dioxide was dozens or hundreds times to that of air, and the variation was very high also. 5. The emission of global green house gases such as carbon dioxide, methane and nitrous oxide was affected by the moisture, temperature and nutrients of soils and the growth period of crops.

  • PDF

Importance of Polar Phytoplankton for the Global Environmental Change (전 지구 환경변화에 대한 극지 식물플랑크톤의 중요성)

  • 강성호;강재신;이상훈;김동선;김동엽
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2000
  • There are increasing evidences of climate change in the Antarctic and Arctic Oceans, especially elevated temperature due to the continuous burning of the fossil fuels and ultraviolet B(UV-B) flux within the ozone hole. Light-dependent, temperature-sensitive, and fast-growing organisms respond to these physical and biogeochemical changes. Polar marine phytoplankton, which are pioneer endemic species and important carbon contributors in the polar waters, are therefore highly suitable biological indicators of such changes. By virtue of light requirement, the primary producers are exposed to extreme seasonal fluctuations in temperature, photosynthetically active radiation, and UV radiation. Local environmental warming and increased UV-B radiation during ozone depletion may have profound effects on the primary producers that are primary carbon producers in the polar water. Small changes in climate temperature and solar radiation may have profound effects on the activity threshold of the polar phytoplanktion. To demonstrate biological response to the environmental changes, standardized representative natural and biological parameters are needed so that replicate samples (including controls) can be taken over extended periods of time. In this paper, we review general characteristics of polar phytoplankton, their environment, environmental changes in the polar waters, the effects on the environmental changes to the polar phytoplankton, and the importance of the polar phytoplankton to understand the global environmental changes. [Biological indicators, Global environmental change, Polar phytoplankton, UV].

  • PDF

On Estimation of Zero Plane Displacement from Single-Level Wind Measurement above a Coniferous Forest (침엽수림 상부의 단일층 풍속 관측으로부터의 영면변위 추정에 관하여)

  • Yoo, Jae-Ill;Hong, Jin-Kyu;Kwon, Hyo-Jung;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.45-62
    • /
    • 2010
  • Zero plane displacement (d) is the elevated height of the apparent momentum sink exerted by the vegetation on the air. For a vegetative canopy, d depends on the roughness structure of a plant canopy such as leaf area index, canopy height and canopy density, and thus is critical for the analysis of canopy turbulence and the calculation of surface scalar fluxes. In this research note, we estimated d at the Gwangneung coniferous forest by employing two independent methods of Rotach (1994) and Martano (2000), which require only a single-level eddy-covariance measurement. In general, these two methods provided comparable estimates of $d/h_c$ (where $h_c$ is the canopy height, i.e., ~23m), which ranged from 0.51 to 0.97 depending on wind directions. These estimates of $d/h_c$ were within the ranges (i.e., 0.64~0.94) reported from other forests in the literature but were sensitive to the forms of the nondimensional functions for atmospheric stability. Our finding indicates that one should be careful in interepreation of zero plane displacement estimated from a single-level eddy covariance measurement that is conductaed within the roughness sublayer.

Long-term and multidisciplinary research networks on biodiversity and terrestrial ecosystems: findings and insights from Takayama super-site, central Japan

  • Hiroyuki Muraoka;Taku M. Saitoh;Shohei Murayama
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.228-240
    • /
    • 2023
  • Growing complexity in ecosystem structure and functions, under impacts of climate and land-use changes, requires interdisciplinary understandings of processes and the whole-system, and accurate estimates of the changing functions. In the last three decades, observation networks for biodiversity, ecosystems, and ecosystem functions under climate change, have been developed by interested scientists, research institutions and universities. In this paper we will review (1) the development and on-going activities of those observation networks, (2) some outcomes from forest carbon cycle studies at our super-site "Takayama site" in Japan, and (3) a few ideas how we connect in-situ and satellite observations as well as fill observation gaps in the Asia-Oceania region. There have been many intensive research and networking efforts to promote investigations for ecosystem change and functions (e.g., Long-Term Ecological Research Network), measurements of greenhouse gas, heat, and water fluxes (flux network), and biodiversity from genetic to ecosystem level (Biodiversity Observation Network). Combining those in-situ field research data with modeling analysis and satellite remote sensing allows the research communities to up-scale spatially from local to global, and temporally from the past to future. These observation networks oftern use different methodologies and target different scientific disciplines. However growing needs for comprehensive observations to understand the response of biodiversity and ecosystem functions to climate and societal changes at local, national, regional, and global scales are providing opportunities and expectations to network these networks. Among the challenges to produce and share integrated knowledge on climate, ecosystem functions and biodiversity, filling scale-gaps in space and time among the phenomena is crucial. To showcase such efforts, interdisciplinary research at 'Takayama super-site' was reviewed by focusing on studies on forest carbon cycle and phenology. A key approach to respond to multidisciplinary questions is to integrate in-situ field research, ecosystem modeling, and satellite remote sensing by developing cross-scale methodologies at long-term observation field sites called "super-sites". The research approach at 'Takayama site' in Japan showcases this response to the needs of multidisciplinary questions and further development of terrestrial ecosystem research to address environmental change issues from local to national, regional and global scales.

Surface Exchange of Energy and Carbon Dioxide between the Atmosphere and a Farmland in Haenam, Korea (한국 해남 농경지와 대기간의 에너지와 이산화탄소의 지표 교환)

  • Hee Choon Lee;Jinkyu Hong;Chun-Ho Cho;Byoung-Cheol Choi;Sung-Nam Oh;Joon Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.61-69
    • /
    • 2003
  • Surface energy and $CO_2$ fluxes have been measured over a farmland in Haenam, Korea since July 2002. Eddy covariance technique, which is the only direct flux measurement method, was employed to quantitatively understand the interaction between the farmland ecosystem and the atmospheric boundary layer. Maintenance of eddy covariance system was the main concern during the early stage of measurement to minimize gaps and uncertainties in the dataset. Half-hourly averaged $CO_2$ concentration showed distinct diurnal and seasonal variations, which were closely related to changes in net ecosystem exchange (NEE) of $CO_2$. Daytime maximum $CO_2$ uptake was about -1.0 mg $CO_2$ m$^{-2}$ s$^{-1}$ in August whereas nighttime $CO_2$ release was up to 0.3 mg $CO_2$ m$^{-2}$ s$^{-1}$ during the summer. Both daytime $CO_2$ uptake and nighttime release decreased gradually with season. During the winter season, NEE was from near zero to 0.05 mg $CO_2$ m$^{-2}$ s$^{-1}$ . FK site was a moderate sink of atmospheric $CO_2$ until September with daily NEE of 22 g $CO_2$ m$^{-2}$ d$^{-1}$ . In October, it became a weak source of $CO_2$ with an emission rate of 2 g $CO_2$ m$^{-2}$ d$^{-1}$ . Long-term flux measurements will continue at FK site to further investigate inter-annual variability in NEE. to better understand these exchange mechanism and in-depth analysis, process-level field experiments and intensive short-term intercomparisons are also expected to be followed.

Estimation of Surface fCO2 in the Southwest East Sea using Machine Learning Techniques (기계학습법을 이용한 동해 남서부해역의 표층 이산화탄소분압(fCO2) 추정)

  • HAHM, DOSHIK;PARK, SOYEONA;CHOI, SANG-HWA;KANG, DONG-JIN;RHO, TAEKEUN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.375-388
    • /
    • 2019
  • Accurate evaluation of sea-to-air $CO_2$ flux and its variability is crucial information to the understanding of global carbon cycle and the prediction of atmospheric $CO_2$ concentration. $fCO_2$ observations are sparse in space and time in the East Sea. In this study, we derived high resolution time series of surface $fCO_2$ values in the southwest East Sea, by feeding sea surface temperature (SST), salinity (SSS), chlorophyll-a (CHL), and mixed layer depth (MLD) values, from either satellite-observations or numerical model outputs, to three machine learning models. The root mean square error of the best performing model, a Random Forest (RF) model, was $7.1{\mu}atm$. Important parameters in predicting $fCO_2$ in the RF model were SST and SSS along with time information; CHL and MLD were much less important than the other parameters. The net $CO_2$ flux in the southwest East Sea, calculated from the $fCO_2$ predicted by the RF model, was $-0.76{\pm}1.15mol\;m^{-2}yr^{-1}$, close to the lower bound of the previous estimates in the range of $-0.66{\sim}-2.47mol\;m^{-2}yr^{-1}$. The time series of $fCO_2$ predicted by the RF model showed a significant variation even in a short time interval of a week. For accurate evaluation of the $CO_2$ flux in the Ulleung Basin, it is necessary to conduct high resolution in situ observations in spring when $fCO_2$ changes rapidly.

Application of Stable Isotopes in Studies of Gas Exchange Processes Between Biosphere and the Atmosphere (생태계와 대기 간의 가스 교환 메카니즘 규명을 위한 안정동위원소의 응용)

  • Han, Gwang-Hyun;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.242-251
    • /
    • 2010
  • In comparison with other terrestrial ecosystems, rice paddies are unique because they provide the primary food source for over 50% of the world's population, and act as major sources of global methane. The present paper summerizes a long-term field study that combine carbon isotopes, and canopy-scale flux measurements in an irrigated rice paddy, in conjugation with continuous monitoring of environmental, and vegetational factors. Both $CO_2$, and methane fluxes were largely influenced by soil temperature, and moisture conditions, especially across drainage events. Soil-entrapped $CO_2$, and methane showed a gradually increasing trend throughout growing season, but rapidly decreased upon flood water drainage. These variations in flux were well correlated with changes in concentration, and isotope ratio of soil $CO_2$, and methane, and of atmospheric $CO_2$, and methane within, and above the canopy. The isotopic signature of the gas exchange process varied markedly in response to change in contribution of soil respiration, belowground storage, fraction of $CO_2$ recycled, magnitude, and direction of $CO_2$ exchange, transport mechanism, and fraction of methane oxidized. Our results clearly demonstrate that stable isotope analysis can be a useful tool to study underlying mechanisms of gas exchange processes under natural conditions.