• 제목/요약/키워드: global damage, Local damage

검색결과 120건 처리시간 0.024초

A decentralized approach to damage localization through smart wireless sensors

  • Jeong, Min-Joong;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • 제5권1호
    • /
    • pp.43-54
    • /
    • 2009
  • This study introduces a novel approach for locating damage in a structure using wireless sensor system with local level computational capability to alleviate data traffic load on the centralized computation. Smart wireless sensor systems, capable of iterative damage-searching, mimic an optimization process in a decentralized way. The proposed algorithm tries to detect damage in a structure by monitoring abnormal increases in strain measurements from a group of wireless sensors. Initially, this clustering technique provides a reasonably effective sensor placement within a structure. Sensor clustering also assigns a certain number of master sensors in each cluster so that they can constantly monitor the structural health of a structure. By adopting a voting system, a group of wireless sensors iteratively forages for a damage location as they can be activated as needed. Since all of the damage searching process occurs within a small group of wireless sensors, no global control or data traffic to a central system is required. Numerical simulation demonstrates that the newly developed searching algorithm implemented on wireless sensors successfully localizes stiffness damage in a plate through the local level reconfigurable function of smart sensors.

손상모형을 이용한 철근 콘크리트 교각의 지진여유도 해석 (Seismic Margin Analysis of Reinforced Concrete Pier Using Damage Model Proceedings)

  • 고현무;이지호;정우영;조호현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.220-227
    • /
    • 2002
  • This study introduces the fragility analysis method for the safety evaluation of reinforced concrete pier subject to earthquake. Damage probability is calculated instead of the failure probability from definition of the damage state in the fragility curve. Not only the damage model determined by the response of structure subject to earthquake, but also the plastic-damage model which can represent the local damage is applied to fragility analysis. The evaluation method of damage state by damage variable in global structure is defined by this procedure. This study introduces the fragility analysis method considering the features of nonlinear time history behavior of reinforced concrete element and the plastic behavior of materials. At last, This study gives one of the approach method for seismic margin evaluation with the result of fragility analysis to design seismic load.

  • PDF

전체해석과 국부해석 조합법을 이용한 국부결함이 있는 트러스교 응력이력해석 (Stress History Evaluation for Truss Bridge with Local Damages by Using Global-Local Model Combination)

  • 김효진;박상일;배기훈;이상호
    • 한국재난관리표준학회지
    • /
    • 제3권1호
    • /
    • pp.33-42
    • /
    • 2010
  • 본 논문에서는 전체해석과 국부해석 조합방법을 이용하여 국부손상 또는 균열의 영향을 반영한 트러스교의 전체지간에서의 응력거동을 예측하였다. 이를 위해서 전체 구조체는 프레임요소에 의한 해석을 수행하고 국부 상세부분은 쉘요소에 의한 해석을 수행하여 두 결과를 조합함으로써 교량의 연결부처럼 응력분포가 복잡한 부분에서 이동하중에 따른 응력이력을 손쉽게 산정하게 된다. 트러스 연결부의 실제 기하학적 형상 및 강성을 전체 프레임해석에 고려하기 위해 국부 쉘모델과 프레임모델의 변위 비교를 통해 프레임 모델의 단면수정계수를 산정하였으며, 실제 공용중인 트러스교의 실험값과 해석값을 비교하여 전체해석-국부해석 조합방법을 검증하였으며, 더 나아가 국부손상의 영향이 반영된 국부 쉘모델 해석결과를 전체해석에 반영시켰다.

  • PDF

Hybrid vibration-impedance monitoring in prestressed concrete structure with local strand breakage

  • Dang, Ngoc-Loi;Pham, Quang-Quang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제30권5호
    • /
    • pp.463-477
    • /
    • 2022
  • In this paper, a hybrid vibration-impedance-based damage monitoring approach is experimentally evaluated for prestressed concrete (PSC) structures with local strand breakage. Firstly, the hybrid monitoring scheme is designed to alert damage occurrence from changes in vibration characteristics and to localize strand breakage from changes in impedance signatures. Secondly, a full-scale PSC anchorage is experimented to measure global vibration responses and local impedance responses under a sequence of simulated strand-breakage events. Finally, the measured data are analyzed using the hybrid monitoring framework. The change of structural condition (i.e., damage extent) induced by the local strand breakage is estimated by changes in a few natural frequencies obtained from a few accelerometers in the structure. The damaged strand is locally identified by tomography analysis of impedance features measured via an array of PZT (lead-zirconate-titanate) sensors mounted on the anchorage. Experimental results demonstrate that the strand breakage in the PSC structure can be accurately assessed by using the combined vibration and impedance features.

Damage and fatigue quantification of RC structures

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1021-1044
    • /
    • 2016
  • Different versions of a damage index (DI) along with a formulation to find the number of cycles at failure due to fatigue, applicable to reinforced concrete (RC) structures are presented. These are based on an energetic analysis method and applicable to both global and local levels. The required data can be found either from the numerical simulation of structures or from the experimental tests. A computer program has been developed to simulate numerically the nonlinear behavior of RC columns under cyclic loading. The proposed DI gives a regular distribution of structural damages up to failure and is validated by the results of the tests carried out on RC columns subjected to cyclic loading. In general, the local and global damage indices give approximately similar results, while each of them has its own advantages. The advantage of the implicit version of DI is that, it allows the comparison of the results with those of the monotonic loading case, while the explicit version makes it possible to estimate the number of loading cycles at failure due to fatigue, and the advantage of the simplified version is that; the monotonic loading data is not needed for the cyclic loading case.

Damage detection in beam-type structures via PZT's dual piezoelectric responses

  • Nguyen, Khac-Duy;Ho, Duc-Duy;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제11권2호
    • /
    • pp.217-240
    • /
    • 2013
  • In this paper, practical methods to utilize PZT's dual piezoelectric effects (i.e., dynamic strain and electro-mechanical (E/M) impedance responses) for damage detection in beam-type structures are presented. In order to achieve the objective, the following approaches are implemented. Firstly, PZT material's dual piezoelectric characteristics on dynamic strain and E/M impedance are investigated. Secondly, global vibration-based and local impedance-based methods to detect the occurrence and the location of damage are presented. Finally, the vibration-based and impedance-based damage detection methods using the dual piezoelectric responses are evaluated from experiments on a lab-scaled beam for several damage scenarios. Damage detection results from using PZT sensor are compared with those obtained from using accelerometer and electric strain gauge.

Twin models for high-resolution visual inspections

  • Seyedomid Sajedi;Kareem A. Eltouny;Xiao Liang
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.351-363
    • /
    • 2023
  • Visual structural inspections are an inseparable part of post-earthquake damage assessments. With unmanned aerial vehicles (UAVs) establishing a new frontier in visual inspections, there are major computational challenges in processing the collected massive amounts of high-resolution visual data. We propose twin deep learning models that can provide accurate high-resolution structural components and damage segmentation masks efficiently. The traditional approach to cope with high memory computational demands is to either uniformly downsample the raw images at the price of losing fine local details or cropping smaller parts of the images leading to a loss of global contextual information. Therefore, our twin models comprising Trainable Resizing for high-resolution Segmentation Network (TRS-Net) and DmgFormer approaches the global and local semantics from different perspectives. TRS-Net is a compound, high-resolution segmentation architecture equipped with learnable downsampler and upsampler modules to minimize information loss for optimal performance and efficiency. DmgFormer utilizes a transformer backbone and a convolutional decoder head with skip connections on a grid of crops aiming for high precision learning without downsizing. An augmented inference technique is used to boost performance further and reduce the possible loss of context due to grid cropping. Comprehensive experiments have been performed on the 3D physics-based graphics models (PBGMs) synthetic environments in the QuakeCity dataset. The proposed framework is evaluated using several metrics on three segmentation tasks: component type, component damage state, and global damage (crack, rebar, spalling). The models were developed as part of the 2nd International Competition for Structural Health Monitoring.

An improved Big Bang-Big Crunch algorithm for structural damage detection

  • Yin, Zhiyi;Liu, Jike;Luo, Weili;Lu, Zhongrong
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.735-745
    • /
    • 2018
  • The Big Bang-Big Crunch (BB-BC) algorithm is an effective global optimization technique of swarm intelligence with drawbacks of being easily trapped in local optimal results and of converging slowly. To overcome these shortages, an improved BB-BC algorithm (IBB-BC) is proposed in this paper with taking some measures, such as altering the reduced form of exploding radius and generating multiple mass centers. The accuracy and efficiency of IBB-BC is examined by different types of benchmark test functions. The IBB-BC is utilized for damage detection of a simply supported beam and the European Space Agency structure with an objective function established by structural frequency and modal data. Two damage scenarios are considered: damage only existed in stiffness and damage existed in both stiffness and mass. IBB-BC is also validated by an existing experimental study. Results demonstrated that IBB-BC is not trapped into local optimal results and is able to detect structural damages precisely even under measurement noise.

철근 콘크리트 특수 모멘트 골조 건물의 비탄성 동적 성능값 (Nonlinear Dynamic Capacity of Reinforced Concrete Special Moment Frame Buildings)

  • 김태완;김태진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.209-216
    • /
    • 2006
  • For evaluation of building performance, a nonlinear dynamic capacity of the building is a key parameter. In this study, an reinforced concrete special moment resisting frame building was chosen to study the process of determining the nonlinear dynamic capacity. The building, which was designed by IBC 2003 representing new codes, was composed of special moment resisting frames in the perimeter and internal frames inside the building. The capacity, which is inter-story drift capacity, consists of two categories, local and global collapses. Global collapse capacity was determined by incremental dynamic analysis. Local collapse capacity was determined by the same method except for utilizing damage index. In audition to this, it was also investigated that the effect of including internal frames designed by gravity load in the analysis. Results showed that the damage index is a useful tool for determining local collapse. Furthermore, including the internal frames with special frames in the analysis is very important in determining the capacity of a building so both must be considered at the same time.

  • PDF

용접 및 볼트 연결부 균열을 고려한 사장교 케이블 정착부의 동특성 해석 (Dynamic Characteristics of Cable-Stayed Anchorage considering Cracks at Bolt and Welding Connection)

  • 김철영;김성보;정우태
    • 한국강구조학회 논문집
    • /
    • 제11권4호통권41호
    • /
    • pp.351-362
    • /
    • 1999
  • 용접 및 볼트 연결부 균열이 사장교 케이블 정착부의 동특성에 미치는 영향을 파악하여, 국부적으로 취약한 케이블 정착부의 손상을 현장에서 쉽게 탐지할 수 있는 가능성을 제시하였다. 해석대상 구조물로서 현재 서해안고속도로의 일부로 시공되고 있는 서해대교 케이블 정착부를 선택하였다. 케이블과 정착부의 연결판을 케이블요소 및 쉘요소로 함께 모델링하여 자유진동해석을 수행하였다. 해석결과 케이블 정착단에서 용접부 균열이 발생한 경우, 연결판의 고유진동수가 균열이 발생하지 않은 경우에 비하여 최대 16%정도 작아짐을 확인하였다. 따라서, 연결판의 고유진동수를 측정하여 케이블 정착부의 손상을 충분히 파악할 수 있다고 판단된다.

  • PDF