Browse > Article
http://dx.doi.org/10.12989/sss.2022.30.5.463

Hybrid vibration-impedance monitoring in prestressed concrete structure with local strand breakage  

Dang, Ngoc-Loi (Urban Infrastructure Faculty, Mien Tay Construction University)
Pham, Quang-Quang (Department of Ocean Engineering, Pukyong National University)
Kim, Jeong-Tae (Department of Ocean Engineering, Pukyong National University)
Publication Information
Smart Structures and Systems / v.30, no.5, 2022 , pp. 463-477 More about this Journal
Abstract
In this paper, a hybrid vibration-impedance-based damage monitoring approach is experimentally evaluated for prestressed concrete (PSC) structures with local strand breakage. Firstly, the hybrid monitoring scheme is designed to alert damage occurrence from changes in vibration characteristics and to localize strand breakage from changes in impedance signatures. Secondly, a full-scale PSC anchorage is experimented to measure global vibration responses and local impedance responses under a sequence of simulated strand-breakage events. Finally, the measured data are analyzed using the hybrid monitoring framework. The change of structural condition (i.e., damage extent) induced by the local strand breakage is estimated by changes in a few natural frequencies obtained from a few accelerometers in the structure. The damaged strand is locally identified by tomography analysis of impedance features measured via an array of PZT (lead-zirconate-titanate) sensors mounted on the anchorage. Experimental results demonstrate that the strand breakage in the PSC structure can be accurately assessed by using the combined vibration and impedance features.
Keywords
hybrid monitoring; impedance response; prestressed concrete structure; PZT interface; strand breakage; vibration response;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Lacidogna, G., Piana, G. and Carpinteri, A. (2019), "Damage monitoring of three-point bending concrete specimens by acoustic emission and resonant frequency analysis", Eng. Fract. Mech., 210, 203-211. https://doi.org/10.1016/j.engfracmech.2018.06.034   DOI
2 Min, J., Yun, C.B. and Hong, J.W. (2016), "An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems", Smart Struct. Syst., Int. J., 17(1), 107-122. https://doi.org/10.12989/sss.2016.17.1.107   DOI
3 Nawy, E.G. (2010), Prestressed Concrete: A Fundamental Approach, Prentice Hall, Hoboken, NJ, USA.
4 Nguyen, K.D. and Kim, J.T. (2012), "Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendonanchorage connection", Smart Struct. Syst., Int. J., 9(6), 489- 504. https://doi.org/10.12989/sss.2012.9.6.489   DOI
5 Nie, J.G., Zhou, M., Wang, Y.H., Fan, J.S. and Tao, M.X. (2014), "Cable anchorage system modeling methods for self-anchored suspension bridges with steel box girders", J. Bridge Eng., 19(2), 172-185. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000529   DOI
6 Park, J.-H. (2009), "Development of autonomous smart sensor nodes for hybrid structural health monitoring of large structures", Ph. D. Dissertation; Pukyong National University, Busan, Korea.
7 Putcha, C., Dutta, S. and Rodriguez, J. (2020), "Risk priority number for bridge failures", Practice Period. Struct. Des. Constr., 25(2), p. 04020010. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000480   DOI
8 Clough, R. and Penzien, J. (1995), Dynamics of Structures, (3rd Edition), Computers & Structures, Inc., University Ave, Berkeley, CA, USA.
9 Ai, D., Luo, H. and Zhu, H. (2019), "Numerical and experimental investigation of flexural performance on pre-stressed concrete structures using electromechanical admittance", Mech. Syst. Signal Process., 128, 244-265. https://doi.org/10.1016/j.ymssp.2019.03.046   DOI
10 Brincker, R., Zhang, L. and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10(3), p. 441. https://doi.org/10.1088/0964-1726/10/3/303   DOI
11 Dang, N.L., Pham, Q.Q. and Kim, J.T. (2020b), "Piezoelectric- based hoop-type interface for impedance monitoring of local strand breakage in prestressed multi-strand anchorage", Struct. Control Health Monitor., 28(1), 1-20. https://doi.org/10.1002/stc.2649   DOI
12 Gudmundson, P. (1982), "Eigenfrequency changes of structures due to cracks, notches or other geometrical changes", J. Mech. Phys. Solids, 30(5), 339-353. https://doi.org/10.1016/0022-5096(82)90004-7   DOI
13 Lee, S. and Kalos, N. (2014), "Non-destructive testing methods in the US for bridge inspection and maintenance", KSCE J. Civil Eng., 18(5), 1322-1331. https://doi.org/10.1007/s12205-014-0633-9   DOI
14 Abdullah, A.B.M., Rice, J.A. and Hamilton, H.R. (2015b), "Wire breakage detection using relative strain variation in unbonded posttensioning anchors", J. Bridge Eng., 20(1), 1-12. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000639   DOI
15 Kim, J.T., Ryu, Y.S., Cho, H.M. and Stubbs, N. (2003a), "Damage identification in beam-type structures: frequency-based method vs mode-shape-based method", Eng. Struct., 25(1), 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9   DOI
16 Abdulkarem, M., Samsudin, K., Rokhani, F.Z. and A Rasid, M.F. (2019), "Wireless sensor network for structural health monitoring: A contemporary review of technologies, challenges, and future direction", Struct. Health Monitor., 19(3), 693-735. https://doi.org/10.1177/1475921719854528   DOI
17 Abdullah, A.B.M., Rice, J.A. and Hamilton, H.R. (2015a), "A strain-based wire breakage identification algorithm for unbonded PT tendons", Smart Struct. Syst., Int. J., 16(3), 415-433. https://doi.org/10.12989/sss.2015.16.3.415   DOI
18 Hiba, A.J. and Glisic, B. (2018), "Monitoring of long-term prestress losses in prestressed concrete structures using fiber optic sensors", Struct. Health Monitor., 18(1), 254-269. https://doi.org/10.1177/1475921717751870   DOI
19 Hiba, A.J. and Glisic, B. (2019), "Monitoring of prestressing forces in prestressed concrete structures-An overview", Struct. Control Health Monitor., 26(8), e2374-1-27. https://doi.org/10.1002/stc.2374   DOI
20 Ho, D.D., Kim, J.T., Stubbs, N. and Park, W.S. (2012), "Prestressforce estimation in PSC girder using modal parameters and system identification", Adv. Struct. Eng., 15(6), 997-1012. https://doi.org/10.1260/1369-4332.15.6.997   DOI
21 Huynh, T.C., Nguyen, T.D., Ho, D.D., Dang, N.L. and Kim, J.T. (2020), "Sensor fault diagnosis for impedance monitoring using a piezoelectric-based smart interface technique", Sensors, 20(2), p. 510. https://doi.org/10.3390/s20020510   DOI
22 Hoang, T., Fu, Y., Mechitov, K., Sanchez, F.G., Kim, J.R., Zhang, D. and Spencer, B.F. (2020), "Autonomous end-to-end wireless monitoring system for railroad bridges", Adv. Bridge Eng., 1(1), 1-27. https://doi.org/10.1186/s43251-020-00014-7   DOI
23 Huynh, T.C. and Kim, J.T. (2014), "Impedance-based cable force monitoring in tendon-anchorage using portable PZT-interface technique", Mathe. Problems Eng., 2014, 1-11. https://doi.org/10.1155/2014/784731   DOI
24 Huynh, T.C. and Kim, J.T. (2017), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", Smart Struct. Syst., Int. J., 20(2), 181-195. https://doi.org/10.12989/sss.2017.20.2.181   DOI
25 Bhalla, S. and Soh, C.K. (2004), "Electromechanical Impedance Modeling for Adhesively Bonded Piezo-Transducers", J. Intell. Mater. Syst. Struct., 15(12), 955-972. https://doi.org/10.1177/1045389X04046309   DOI
26 Bonopera, M., Chang, K.C. and Lee, Z.K. (2020), "State-of-the-art review on determining prestress losses in prestressed concrete girders", Appl. Sci., 10(20), p. 7257. https://doi.org/10.3390/app10207257   DOI
27 Cervenka, V. and Ganz, H.R. (2014), "Validation of posttensioning anchorage zones by laboratory testing and numerical simulation", Struct. Concrete, 15(2), 258-268. https://doi.org/10.1002/suco.201300038   DOI
28 Cho, S., Lynch, J.P., Lee, J.J. and Yun, C.B. (2009), "Development of an automated wireless tension force estimation system for cable-stayed bridges", J. Intell. Mater. Syst. Struct., 21(3), 361-376. https://doi.org/10.1177/1045389X09350719   DOI
29 Dang, N.L., Huynh, T.C., Pham, Q.Q., Lee, S.Y. and Kim, J.T. (2020a), "Damage-sensitive impedance sensor placement on multi-strand anchorage based on local stress variation analysis", Struct. Control Health Monitor., 27, p. e2547. https://doi.org/10.1002/stc.2547   DOI
30 Dang, N.L., Huynh, T.C. and Kim, J.T. (2019), "Local strandbreakage detection in multi-strand anchorage system using an impedance-based stress monitoring method-feasibility study", Sensors, 19(5), p. 1054. https://doi.org/10.3390/s19051054   DOI
31 Fang, Z. and Wang, J.Q. (2010), "Practical formula for cable tension estimation by vibration method", J. Bridge Eng., 17(1), 161-164. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000200   DOI
32 Giurgiutiu, V. and Rogers, C.A. (1998), "Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE", In: Smart Structures and Materials 1998: Smart Structures and Integrated Systems, Vol. 3329, pp. 536-547. https://doi.org/10.1117/12.316923   DOI
33 Tadros, M.K., Omaishi, N.A., Seguirant, S.J. and Gallt, J.G. (2003), "Prestress losses in pretensioned high-strength concrete bridge girders", Report No. NCHRP REPORT 496; National Cooperative Highway Research Program, Transportation Research Board, Washington, D.C., USA.
34 VSL (2018), VSL Strand Post-tensioning Systems, Available online, accessed 12 June 2018. https://vsl.com/home/technologies/post-tensioning-systems/
35 Kim, J.T., Yun, C.B., Ryu, Y.S. and Cho, H.M. (2004), "Identification of prestress-loss in PSC beams using modal information", Struct. Eng. Mech., Int. J., 17(3_4), 467-482. https://doi.org/10.12989/sem.2004.17.3_4.467   DOI
36 Lee, S.Y., Huynh, T.C. and Kim, J.T. (2018), "A practical scheme of vibration monitoring and modal analysis for caisson breakwater", Coastal Eng., 137, 103-119. https://doi.org/10.1016/j.coastaleng.2018.03.008   DOI
37 Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32(1), 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021   DOI
38 Lacidogna, G., Piana, G., Accornero, F. and Carpinteri, A. (2020), "Multi-technique damage monitoring of concrete beams: acoustic emission, digital image correlation, dynamic identification", Constr. Build. Mater., 242, p. 118114. https://doi.org/10.1016/j.conbuildmat.2020.118114   DOI
39 Lan, C., Zhou, Z. and Ou, J. (2014), "Monitoring of structural prestress loss in RC beams by inner distributed Brillouin and fiber Bragg grating sensors on a single optical fiber", Struct. Control Health Monitor., 21(3), 317-330. https://doi.org/10.1002/stc.1563   DOI
40 Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electromechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer", J. Intell. Mater. Syst. Struct., 5(1), 12-20. https://doi.org/10.1177/1045389X9400500102   DOI
41 Richmond, M., Smolka, U. and Kolios, A. (2020), "Feasibility for damage identification in offshore wind jacket structures through monitoring of global structural dynamics", Energies, 13(21), p. 5791. https://doi.org/10.3390/en13215791   DOI
42 Ye, X., Jin, T. and Yun, C. (2019), "A review on deep learningbased structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-585. https://doi.org/10.12989/sss.2019.24.5.567   DOI
43 Wei, F. and Pizhong, Q. (2010), "Vibration-based damage identification methods: a review and comparative study", Struct. Health Monitor.: Int. J., 10(1), 83-111. https://doi.org/10.1177/1475921710365419   DOI
44 Yang, Y., Hu, Y. and Lu, Y. (2008a), "Sensitivity of PZT impedance sensors for damage detection of concrete structures", Sensors, 8(1), 327-346. https://doi.org/10.3390/s8010327   DOI
45 Yang, Y., Lim, Y.Y. and Soh, C.K. (2008b), "Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures: I. Experiment", Smart Mater. Struct., 17(3), 035008-1-14. https://doi.org/10.1088/0964-1726/17/3/035008   DOI
46 Yi, J.-H. and Yun, C.-B. (2004), "Comparative study on modal identification methods using output-only information", Struct. Eng. Mech., Int. J., 17(3_4), 445-466. https://doi.org/10.12989/sem.2004.17.3_4.445   DOI
47 Yu, Y., Liu, Y., Chen, J., Jiang, D., Zhuang, Z. and Wu, X. (2021), "Detection method for bolted connection looseness at small angles of timber structures based on deep learning", Sensors, 21(9), p. 3106. https://doi.org/10.3390/s21093106   DOI
48 Zui, H., Shinke, T. and Namita, Y. (1996), "Practical formulas for estimation of cable tension by vibration method", J. Struct. Eng., 122(6), 651-656. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(651)   DOI
49 Kim, J.T. and Stubbs, N. (2003b), "Crack detection in beam-type structures using frequency data", J. Sound Vib., 259(1), 145-160. https://doi.org/10.1006/jsvi.2002.5132   DOI