• Title/Summary/Keyword: global climate

Search Result 1,914, Processing Time 0.035 seconds

Assessing the skill of seasonal flow forecasts from ECMWF for predicting inflows to multipurpose dams in South Korea (ECMWF 계절 기상 전망을 활용한 국내 다목적댐 유입량 예측의 성능 비교·평가)

  • Lee, Yong Shin;Kang, Shin Uk
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.571-583
    • /
    • 2024
  • Forecasting dam inflows in the medium to long term is crucial for effective dam operation and the prevention of water-related disasters such as floods and droughts. However, the increasing frequency of extreme weather events due to climate change has made hydrological forecasting more challenging. Since 2000, seasonal weather forecasts, which provide predictions for weather variables up to about seven months ahead, and their hydrological interpretation, known as Seasonal Flow Forecasts (SFFs) have gained significant global interest. This study utilises seasonal weather forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF), converting them into inflow forecasts using a hydrological model for 12 multipurpose dams in South Korea from 2011 to 2020. We then compare the performance of these SFFs with the Ensemble Streamflow Prediction (ESP). Our results indicate that while SFFs are more effective for short-term predictions of 1-2 months, ESP outperforms SFFs for long-term predictions. Seasonally, the performance of SFFs is higher in October-November but lower from December to February. Moreover, our findings demonstrate that SFFs are highly effective in quantitatively predicting dry conditions, although they tend to underestimate inflows under wet conditions.

Structural Safety Diagnosis of Plastic Greenhouse Using 3D Scanning Method

  • Byung-hun Seo;Sangik Lee;Jonghyuk Lee;Dongsu Kim;Yejin Seo;Dongwoo Kim;Yerim Jo;Won Choi
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1295-1295
    • /
    • 2024
  • As extreme weather events such as heavy snowfall and typhoon become more frequent, climate change significantly impacts across various worldwide industries. With demands for dealing with this phenomenon, continuous achievements in safety diagnosis have been announced for large structures. Conversely, in agricultural infrastructures having lower risk to human life, there is lack of established safety diagnosis methods. However, considering expansion of high-value smart farm, the importance of plastic greenhouse cannot be overlooked. Therefore, this study aimed to develop on-site diagnosis technique for structural safety of steel structure greenhouse. To build an analysis model, we generated point cloud data of on-site greenhouse using a camera with LiDAR sensor. Subsequently, we extracted points corresponding to pipes using a pre-trained semantic segmentation model, achieving a pipe segmentation accuracy of 78.1%. These points were then converted into 3D frame model, with a location coordinate error of 5.4 cm for nine reference points, as measured by an on-site survey. In FEM structural analysis, nonlinearity of pipe connection was reflected. The loads were determined based on expected wind speed and snow depth in Korea. The structural safety of on-site model was diagnosed more vulnerable with 10.3% higher maximum axial stress, compared with standard model. Through this research, we expect the quantitative safety diagnosis of predicting greenhouse collapse risk. In addition, this technique will enable localized reinforcement strategies within the structure.

Growth and Physiological Characteristics of Pinus densiflora Seedlings in Response to Open-field Experimental Warming using the Infrared Lamp (적외선등을 이용한 실외 실험적 온난화 처리가 소나무 묘목의 생장과 생리적 특성에 미치는 영향)

  • Lee, Sun Jeoung;Han, Saerom;Yoon, Tae Kyung;Han, Seung Hyun;Jung, Yejee;Yun, Soon Jin;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.522-529
    • /
    • 2013
  • Climate change will affect the physiological traits and growth of forest trees. This study was conducted to investigate the effects of an experimental warming on growth and physiological characteristics of Pinus densiflora S. et Z. seedlings. One-year-old P. densiflora seedlings were planted in control and warmed plots in April 2010. The air temperature of warmed plots was increased by $3^{\circ}C$ using infrared lamps from November 2010. We measured shoot height, root collar diameter, above and below ground biomass, chlorophyll contents and leaf nitrogen concentration from March 2011 to March 2013. Seedling height and root collar diameter showed no significant difference between warmed and control plots except for root collar diameter measured in June 2012. Seedling leaf biomass was lower in the warmed ($23.94{\pm}2.10g$) than in the control ($26.08{\pm}1.72g$) plots in 2013. Shoot to root ratio (S/R ratio) was lower in the warmed ($1.09{\pm}0.07$) than in the control ($1.31{\pm}0.10$) plots in 2013. Leaf nitrogen concentrations and chlorophyll contents were not significantly different between warmed and control plots except for leaf nitrogen concentration in 2011. Leaf C/N ratio was increased in 2012 under the warming treatment. Low growth and S/R ratio in warmed plots might be related to the higher temperature and water stress. In the future, the below-ground carbon allocation of P. densiflora might be increased by global warming due to temperature and water stress.

A Study of the Environmental Consciousness Influences on the Psychological Reaction of Forest Ecotourists (환경의식에 따른 산림생태관광객의 심리적 반응에 관한 연구)

  • Yan, Guang-Hao;Na, Seung-Hwa
    • Journal of Distribution Science
    • /
    • v.10 no.1
    • /
    • pp.43-52
    • /
    • 2012
  • With the slowdown in environmental issues and the change of environmental consciousness, ecotourism is being discussed in various social fields. Ecotourism is being popularized for environmental protection, and now it is becoming a mainstream product from one of mass tourism. Ecotourism's emphasis on sustainable development in the tourism destination's society, economy, and environment, through ecotourism study and education, enable people to understand the core value of the ecological environment. 2011 was nominated as "the Year of World Forest" by the UN. In the recent years, forests are becoming increasingly important with their own values and functions in environment, economy, society, and culture. In particular, the global environmental issues caused by climate change are becoming an international agenda. Forests are the only effective solution for the carbon dioxide that causes global warming. Moreover, forests constitute a major part of ecotourism, and are now most used by ecotourists. For example, Korea, wherein 60% of the land is forest, attracts ecotourists. With the increasing interests in environment, the number of tourists visiting the ecosystem forest, which is highly valued for its conservation, is increasing significantly every year and is receiving considerable attention from the government. However, poor facilities in the forest ecotourism sites and improper market strategies are the reasons for the poor running of these sites. Furthermore, tourists' environmental awareness affects ecology environmental pollution or the optimization of forest ecotourism. In order to verify the relationships among tourist attractiveness, environmental consciousness, charm degrees of the attractions, and attitudes after tours, we established some scales based on existing research achievement. Then, using these scales, the researcher completed the questionnaire survey. From December 20, 2010 to February 20, 2011, after conducting surveys for 12 weeks, we finally obtained 582 valid questionnaires, from a total of 700 questionnaires, that could be used in statistical analysis. First, for the method of research and analysis, the researcher initially applied the Cronbach's (Alpha) for verifying the reliability, and subsequently applied the Exploratory factor analysis for verifying the validity. Second, in order to analyze the demographics, the researcher makes use of the Frequency analysis for the AMOS, measurement model, structural equation model computing, and also utilizes construct validity, convergent validity, discriminant validity, and nomological validity. Third, for the analysis of the ecotourists' environmental consciousness, impacts on tourist attractiveness, charm degrees of the attractions, and attitudes after the tour, the researcher uses AMOS 19, with the path analysis and equation of structure. After the research, researchers found that high awareness of natural protection lead to high tourist motivation and satisfaction and more positive attitude after the tour. Moreover, this research shows the psychological and behavioral reactions of the ecotourists to the ecotourist development. Accordingly, environmental consciousness does not affect the tourist attractiveness that has been interpreted as significant. Furthermore, people should focus on the change of natural protection consciousness and psychological reaction of ecotourists while ensuring the sustainable development of ecotourists and developing some ecotourist programs.

  • PDF

A Study of Estimation of Forest Ecosystem Carbon Storage in Gyeryongsan National Park, Korea (계룡산 국립공원 산림생태계의 탄소축적량 산정에 관한 연구)

  • Jang, Ji-Hye;Yi, Joon-Seok;Jeong, Ji-Sun;Song, Tae-Young;Lee, Kyengjae;Suh, Sang-Uk;Lee, Jaeseok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.319-327
    • /
    • 2014
  • Understanding and quantifying of carbon storage in ecosystem is very important factor for predicting change of global carbon cycle under the global climate change. We estimated total ecosystem carbon in Gyeryongsan National Park with naturally well preserved ecosystem in Korea. Vegetation of Gyeryongsan National Park was classified with mainly four communities with Quercus mongolica (1,743.5 ha, 38.0%), Quercus variabilis (1,174.0 ha, 25.6%), Quercus serrata (971.9 ha, 21.2%), Pinus densiflora (695.2 ha, 15.2%). Biomass and soil carbons were calculated from biomass allometric equations based on the DBH and carbon contents of soil and litter collected in quadrat in each community. The tree biomass carbon was in Quercus variabilis ($130.1tCha^{-1}$), Pinus densiflora ($111.1tCha^{-1}$), Quercus mongolica ($76.2tCha^{-1}$), Quercus serrata ($39.0tCha^{-1}$). Soil carbon storage was in Quercus mongolica ($159.7tCha^{-1}$), Quercus serrata ($121.0tCha^{-1}$), Pinus densiflora ($110.5tCha^{-1}$), Quercus variabilis ($90.8tCha^{-1}$). Ecosystem carbon storage was Pinus densiflora ($239.9tCha^{-1}$), Quercus mongolica ($235.9tCha^{-1}$), Quercus variabilis ($226.0tCha^{-1}$), Quercus serrata ($165.9tCha^{-1}$), total amount was $867.7tCha^{-1}$. The area of each vegetation carbon storage was Quercus mongolica ($411,200tCha^{-1}$), Quercus variabilis ($265,300tCha^{-1}$), Pinus densiflora ($166,800tCha^{-1}$), Quercus serrata ($161,200tCha^{-1}$) and the total ecosystem carbon amount estimated $1,045,400tCha^{-1}$ at Gyeryongsan National Park. Theses results indicate that different in naturally well preserved ecosystem.

Effects of Elevated $CO_2$ Concentration and Temperature on the Response of Seed Germination, Phenology and Leaf Morphology of Phytolacca insularis(Endemic species) and Phytolacca americana(Alien species) ($CO_2$농도와 온도증가에 따른 한국특산식물 섬자리공과 귀화식물 미국자리공의 발아, 식물계절 및 잎의 형태학적 반응연구)

  • Kim, Hae-Ran;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.1
    • /
    • pp.62-68
    • /
    • 2010
  • This study was conducted to find out how the germination, phenology and leaf morphology of Phytolacca insularis(endemic species of Korea) and P. americana(alien species) react to the global warming situation. Seed and seedlings of two species were sampled and placed under two separate conditions for the experiment. One of the seed and seedlings was treated in the glass house with control(ambient $CO_2$+ambient temperature, (AC-AT), and the other with control(elevated $CO_2$+ elevated temperature, EC-ET), over the period of one year, 2008-2009. The germination rate of two species was fast, and the time of their germination started early, when they were treated at EC-ET than at AC-AT. Furthermore, the germination rate of Phytolacca insularis(endemic species of Korea) was found to be comparatively lower than that of P. americana(alien species). The former showed only vegetative growth whereas the latter showed both vegetative growth and reproductive growth in one year period. The more $CO_2$ degree and temperature increased, phenological responses of two species, including leaf growth, the formation of flower stems, flowering, and fruit maturing, became much faster, and the time of their leaf-yellowing was delayed. The lamina length of P. insularis was not significantly affected by elevated $CO_2$ and temperature. The lamina length of P. americana, on the other hand, became longer at EC-ET than at AC-AT, but the leaf width of both species increased at EC-ET. As for the number of leaves, both species showed no difference. Finally, the ratio of the leaf area of P. insularis was high at AC-AT, but P. americana was high at EC-ET. These results indicate that P. americana, aliens species, reacts more sensitively to global warming than P. insularis, endemic species, does.

Evaluation of MODIS-derived Evapotranspiration at the Flux Tower Sites in East Asia (동아시아 지역의 플럭스 타워 관측지에 대한 MODIS 위성영상 기반의 증발산 평가)

  • Jeong, Seung-Taek;Jang, Keun-Chang;Kang, Sin-Kyu;Kim, Joon;Kondo, Hiroaki;Gamo, Minoru;Asanuma, Jun;Saigusa, Nobuko;Wang, Shaoqiang;Han, Shijie
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.174-184
    • /
    • 2009
  • Evapotranspiration (ET) is one of the major hydrologic processes in terrestrial ecosystems. A reliable estimation of spatially representavtive ET is necessary for deriving regional water budget, primary productivity of vegetation, and feedbacks of land surface to regional climate. Moderate resolution imaging spectroradiometer (MODIS) provides an opportunity to monitor ET for wide area at daily time scale. In this study, we applied a MODIS-based ET algorithm and tested its reliability for nine flux tower sites in East Asia. This is a stand-alone MODIS algorithm based on the Penman-Monteith equation and uses input data derived from MODIS. Instantaneous ET was estimated and scaled up to daily ET. For six flux sites, the MODIS-derived instantaneous ET showed a good agreement with the measured data ($r^2=0.38$ to 0.73, ME = -44 to $+31W\;m^{-2}$, RMSE =48 to $111W\;m^{-2}$). However, for the other three sites, a poor agreement was observed. The predictability of MODIS ET was improved when the up-scaled daily ET was used ($r^2\;=\;0.48$ to 0.89, ME = -0.7 to $-0.6\;mm\;day^{-1}$, $RMSE=\;0.5{\sim}1.1\;mm\;day^{-1}$). Errors in the canopy conductance were identified as a primary factor of uncertainty in MODIS-derived ET and hence, a more reliable estimation of canopy conductance is necessary to increase the accuracy of MODIS ET.

Provenance of the ARA07C-St02B Core Sediment from the East Siberian Margin (동시베리아해 연변부 ARA07C-St02B 코어 퇴적물의 기원지 연구)

  • Koo, Hyo Jin;Lim, Gi Taek;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.13-24
    • /
    • 2022
  • The Arctic Ocean is very sensitive to global warming and Arctic Ocean sediments provide a records of terrestrial climate change, analyzing their composition helps clarify global warming. The gravity core sediment ARA07C-St02B was collected at the East Siberian margin during an Arctic expedition in 2016 on the Korean ice-breaking vessel ARAON, and its provenance was estimated through sedimentological, mineralogical and geochemical analysis. The core sediment was divided into four units based on sediment color, sand content and ice-rafted debris content. Units 1 and 3 had higher sand and ice-rafted debris contents than units 2 and 4, and contained a brown layer, whereas units 2 and 4 were mainly composed of a gray layer. Correlation analysis using the adjacent core sediment ARA03B-27 suggested that the sediment units were deposited during marine isotope stage 1 to 4. The bulk mineral, clay mineral, and geochemical compositions of units including a brown layer differed from units including a gray layer. Bulk and clay mineral compositions indicated that coarse and fine sediments had a different origin. Coarse sediments might have been deposited mostly by the East Siberian Coastal Current from the Laptev Sea and the East Siberian Sea or by the Beaufort Gyre from the Chukchi Sea, whereas fine sediments might have been transpoted mostly by currents from the East Siberian Sea, the Chukchi Sea and the Beaufort Sea. Some of the coarse sediments in unit 1 and fine sediments in unit 3 might have been deposited by iceberg ice, sea ice or current from the Beaufort Sea and the Canada Archipelago. Investigating the geochemical composition of the potential origins will elucidate the origin and transportation of the study area's core sediments.

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula (한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인)

  • Kim, Hee-Young;Park, Kyung-Ae;Kwak, Byeong-Dae;Joo, Hui-Tae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.604-617
    • /
    • 2022
  • Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.

Analysis of Oceanic Current Maps of the East Sea in the Secondary School Science Textbooks (중등 과학 교과서의 동해 해류도 분석)

  • Park, Kyung-Ae;Park, Ji-Eun;Seo, Kang-Sun;Choi, Byoung-Ju;Byun, Do-Seong
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.832-859
    • /
    • 2011
  • The importance of scientific education on accurate oceanic currents and circulation has been increasingly addressed because the currents have played a significant role in climate change and global energy balance. The objectives of this study are to analyze errors of the oceanic current maps in the textbooks, to discuss a variety of error sources, to suggest how to produce a unified oceanic current map of the East Sea for the students. Twenty-seven textbooks based on the 7th National Curriculum were analyzed and quantitatively investigated on the characteristics of the current maps by comparing with both the previous literature and up-to-date scientific knowledge. All the maps in the textbooks with different mappings were converted to digitalized image data with Mercator mapping using geolocation information. Detailed analysis were performed to investigate the patterns of the Tsushima Warm Current (TWC) in the Korea Strait, to examine how closely the nearshore branch of the TWC flows along the Japanese coast, to scrutinize the features of the offshore branch of the TWC south of the subpolar front in the East Sea, to quantitatively investigate the northern range of the northward-propagating East Korea Warm Current and its latitude turning to the east, and lastly to examine the outflow of the TWC near the Tsugaru Strait and the Soya Strait. In addition, the origins, southern limits, and distances from the coast of the Liman Current and the North Korea Cold Current were analyzed. Other erroneous expressions of the currents in the textbooks were presented. These analyses revealed the problems in the present current maps of the textbooks, which might lead the students to misconception. This study also addressed a necessity in a bridge between scientists with up-to-date scientific results and educators who needed educational materials.