• Title/Summary/Keyword: global climate

Search Result 1,915, Processing Time 0.03 seconds

Analysis of Vulnerability of Emergency Transport Service for Flooded Area (침수피해지역의 응급이송서비스 취약성 분석)

  • Lee, Yoon-Ha;Hong, Won-Hwa;Lee, Ji-Soo;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.122-130
    • /
    • 2018
  • Recent urbanization, population densification, and the impact of global climate change are causing disasters to become larger and more complex. Meanwhile, in Korea, there is an emphasis on preventing, restoring, and recovering from disasters. However, disaster medical care, which is absolutely necessary to maintain life in a disaster, is being ignored. Therefore, in this study, we selected Seoul as the study area where flood damage is frequent and underground housing is densely populated. Assuming underground housing in the immersion history area as the emergency patient site, transfer distance and transfer time were analyzed. This study considered both accessibility to emergency medical facilities and disaster sites and accessibility from emergency services to disaster sites. Therefore, it seems to be meaningful as basic data for the improvement of emergency medical services.

Thematic Map Construction of Erosion and Deposition in Rivers Using GIS-based DEM Comparison Technique

  • Han, Seung Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.153-159
    • /
    • 2016
  • Rivers refer to either natural or artificial structures whose primary functions are flood control and water conservation. Due to recent localized torrential downpours led by climate change, large amounts of eroded soil have been carried away, forming deposits downstream, which in turn degrades the capacity to fulfill these functions. To manage rivers more effectively, we need data on riverbed erosion and deposition. However, environmental factors make it challenging to take measurements in rivers, and data errors tend to prevent researchers from grasping the current state of erosions and deposits. In this context, the aim of the present study is to provide basic data required for river management. To this end, the author made annual measurements with a Real-time Kinematic-Global Positioning System (RTK-GPS) and a total station in Pats Cabin Canyon, Oregon, United States, and also prepared thematic maps of erosion and deposition thickness as well as water depth profiles based on a GIS spatial analysis. Furthermore, the author statistically analyzed the accuracy of three dimensional (3D) measurement points and only used the data that falls within two standard deviations (i.e. ±2σ). In addition, the author determined a threshold for a DEM of Difference (DoD) by installing measurement points in the rivers and taking measurements, and then estimated erosion and deposition thickness within a confidence interval of ±0.1m. Based on the results, the author established reliable data on river depth profiles and thematic maps of erosion and deposition thickness using pre-determined work flows. It is anticipated that the riverbed data can be utilized for effective river management.

Publishing a Web Based Crop Monitoring System and Performance Test (웹 기반 농업생산환경 모니터링 시스템 시범구축 및 성능평가)

  • Lee, Jung-Bin;Kim, Jeong-Hyun;Park, Yong-Nam;Hong, Suk-Young;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.491-499
    • /
    • 2015
  • In developed countries such as USA and Europe, agricultural monitoring system is developed and utilized in various fields in order to predict crop yield, observe weather conditions and anomaly, categorize crop fields, and calculate areas for each crop. These system is Web Map Service(WMS) which utilizes open source and commercial softwares, and various information collected from remote sensing data are provided. This study will utilize tools such as GeoServer, ArcGIS Server, which are widely used to monitor agricultural production, to publish Map Server and Web Application Server. This enables performance test study for future agricultural production monitoring system by making use of response time and data transfer test. When tested in identical condition GeoServer showed a better result in response time and data transfer for performance test.

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

Site Prioritization for Artificial Recharge in Korea using GIS Mapping (지리정보시스템을 이용한 우리나라 인공함양 개발 유망지역 분석)

  • Seo, Jeong-A;Kim, Yong-Cheol;Kim, Jin-Sam;Kim, Yong-Je
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.66-78
    • /
    • 2011
  • It is getting difficult to manage water resources in South Korea because more than half of annual precipitation is concentrated in the summer season and its intensity is increasing due to global warming and climate change. Artificial recharge schemes such as well recharge of surface water and roof-top rainwater harvesting can be a useful method to manage water resources in Korea. In this study, potential artificial recharge site is evaluated using geographic information system with hydrogeological and social factors. The hydrogeological factors include annual precipitation, geological classification based on geological map, specific capacity and depth to water level of national groundwater monitoring wells. These factors were selected to evaluate potential artificial recharge site because annual precipitation is closely related to source water availability for artificial recharge, geological features and specific capacity are related to injection capacity and depth to water is related to storage capacity of the subsurface medium. In addition to those hydrogeological factors, social aspect was taken into consideration by selecting the areas that is not serviced by national water works and have been suffered from drought. These factors are graded into five rates and integrated together in the GIS system resulting in spatial distribution of artificial recharge potential. Cheongsong, Yeongdeok in Gyeongsangbuk-do and Hadong in Gyeongsangnam-do, and Suncheon in Jeollanam-do were proven as favorable areas for applying artificial recharge schemes. Although the potential map for artificial recharge in South Korea developed in this study need to be improved by using other scientific factors such as evaporation and topographical features, and other social factors such as water-curtain cultivation area, hot spring resorts and industrial area where groundwater level is severely lowered, it can be used in a rough site-selection, preliminary and/or feasibility study for artificial recharge.

Comparison Study of Rainfall Data Using RDAPS Model and Observed Rainfall Data (RDAPS 모델의 강수량과 실측강수량의 비교를 통한 적용성 검토)

  • Jeong, Chang-Sam;Shin, Ju-Young;Jung, Young-Hun;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.221-230
    • /
    • 2011
  • The climate change has been observed in Korea as well as in the entire world recently. The rainstorm has been gradually increased and then the damage has been grown. It is getting important to predict short-term rainfall. The Korea Meteorological Administration (KMA) generates numerical model outputs which are computed by Global Data Assimilation and Prediction System (GDAPS) and Regional Data Assimilation and Prediction System (RDAPS). The KMA predicts rainfall using RDAPS results. RDAPS model generates 48 hours data which is organized 3 hours data accumulated at 00UTC and 12UTC. RDAPS results which are organized 3 hours time scale are converted into daily rainfall to compare observed daily rainfall. In this study, 9 cases are applied to convert RDAPS results to daily rainfall data. The MAP (mean areal precipitation) in Geum river basin are computed by using KMA which are 2005 are used. Finally, the best case which gives the close value to the observed rainfall data is obtained using the average absolute relative error (AARE) especially for the Geum River basin.

Flood Forecasting Study using Neural Network Theory and Hydraulic Routing (신경망 이론과 수리학적 홍수추적에 의한 홍수예측에 관한 연구)

  • Jee, Hong Kee;Choo, Yeon Moon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.207-221
    • /
    • 2014
  • Recently, due to global warming, climate change has affected short time concentrated local rain and unexpected heavy rain which is increasingly causing life and property damage. Therefore, this paper studies the characteristic of localized heavy rain and flash flood in Nakdong basin study area by applying Data Mining method to predict flood and constructing water level predicting model. For the verification neural network from Data Mining method and hydraulic flood routing was used for flood from July 1989 to September 1999 in Nakdong point and Iseon point was used to compare flood level change between observed water level and SAM (Slope Area Method). In this research, the study area was divided into three cases in which each point's flood discharge, water level was considered to construct the model for hydraulic flood routing and neural network based on artificial intelligence which can be made from simple input data used for comparison analysis and comparison evaluation according to actual water level and from the model.

Ionic Liquid based Carbon Dioxide Separation Membrane (이온성 액체를 이용한 이산화탄소 분리막)

  • Park, Jung Hyeok;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.149-157
    • /
    • 2020
  • Ionic Liquid (IL) in the category of low-temperature molten salts with organic cation and organic/inorganic anion has shown great potentiality in CO2 gas separation. CO2 gas separation from flue gas by IL based membrane has been widely researched in recent years to overcome climate change and global warming. Membranes based on free standing polyionic liquid (PIL), blend of ionic liquid and composite ionic liquid membranes are discussed in this review. Introducing different IL monomers and tuning microstructure of PIL membrane and composite of PIL-IL to enhance mechanical properties of membranes with good CO2 gas permeability and selectivity. Variations in cation and anions of monomer has great impact on the membrane gas separation performance.

Research and Intellectual Property Trend of Heat Stress in Dairy Cows (고온기 젖소 스트레스 저감 기술에 대한 국내외 연구 및 특허 동향 분석)

  • Ki, Kwang-Seok;Lim, Dong-Hyun;Kim, Tae-Il;Park, Seong-Min;Lim, Hyun-Joo;Lee, Jun-Yeob;Lee, Song-Hee
    • Journal of Animal Environmental Science
    • /
    • v.21 no.3
    • /
    • pp.105-112
    • /
    • 2015
  • This study was conducted to establish the research direction of heat stress in dairy cows by searching papers and patents. Research papers published before 2014 through National Digital Science Library (NDSL) and patents registered with United States Patent and Trademark Office (USPTO), Japan Patent Office (JPO), European Patent Office (EPO) and Korean Intellectual Property Office (KIPO) were investigated using the key words of heat stress index, genetics, facilities and feed. The research trend for heat stress in dairy cows was analyzed with 182 papers and 282 patents. Global warming due to increased atmospheric concentration of greenhouse gases is a major interest in recent years. The papers related with heat stress in cattle were increased after 2006. Besides, patents connected with facilities and feed will be increased due to development of ICT. In particular, the various studies including patents about heat stress in dairy cows will be needed to conduct because the climate of southern Korean peninsula is changing from temperate to subtropic.

Estimating Equipment and vehicle Demands for Snow Removal Tasks by Road Snow Removal Scenarios (도로 제설 시나리오별 소요 제설장비 및 차량 추정에 관한 연구)

  • Kim, Heejae;Kim, Sunyoung;Kim, Geunyoung
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.199-212
    • /
    • 2017
  • Rapid roadway snow removal is significantly important due to difficult occurrence estimation of heavy snowfall disasters by global warming and climate change. Local governments of S. Korea have snow removal equipments and vehicles based on past experiences without considering snowfall and roadway characteristics. The objective of this research is to develop the demand estimation procedure for snow removal equipments and vehicles based on regional snowfall and roadway characteristics. This research first classifies regional snowfall characteristics using KMO's ten-year snowfall data. Second, roadway snow removal length is computed for local governments. Real possession data is compared with demand estimation of snow removal equipments & vehicles for each local government with roadway snow removal scenarios. Finally, required demands of snow removal equipments & vehicles are predicted by concerning regional snowfall amount and required snow removal hours. Results from this research are used for developing heavy snowfall disaster management policies for optimal demands and snow removal routes of 229 local governments.