• Title/Summary/Keyword: global civil society

검색결과 566건 처리시간 0.029초

Application of Structure Maintenance and Management System Using GIS & GPS

  • Roh, Tae-Ho;Jang, Ho-Sik;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • 제4권1호
    • /
    • pp.17-22
    • /
    • 2004
  • It is very important to manage efficient data for safety and maintenance of those constructs. Estimation for structural safety can be evaluated by using data that surveys various structural durability and safety elements. so, it should be based on synthetic and efficient data that includes a variety of related safety elements obtained from a structure. It will subsequently be managed properly and economically. Accordingly, we will approach efficient maintenance management using a Geographic Information System (GIS) with data from structural-safety diagnosis and a Global Positioning System (GPS). In this study, we noted that by using the data that measures the factors (crack, incline, settlement etc.) of various structures as evaluate safety degree. And the horizontal coordinate variation/time of structure was monitored using the GPS easily.

  • PDF

하모니 서치 알고리즘과 고유진동수 제약조건에 의한 트러스의 단면과 형상 최적설계 (Optimum Design of Truss on Sizing and Shape with Natural Frequency Constraints and Harmony Search Algorithm)

  • 김봉익;권중현
    • 한국해양공학회지
    • /
    • 제27권5호
    • /
    • pp.36-42
    • /
    • 2013
  • We present the optimum design for the cross-sectional(sizing) and shape optimization of truss structures with natural frequency constraints. The optimum design method used in this paper employs continuous design variables and the Harmony Search Algorithm(HSA). HSA is a meta-heuristic search method for global optimization problems. In this paper, HSA uses the method of random number selection in an update process, along with penalty parameters, to construct the initial harmony memory in order to improve the fitness in the initial and update processes. In examples, 10-bar and 72-bar trusses are optimized for sizing, and 37-bar bridge type truss and 52-bar(like dome) for sizing and shape. Four typical truss optimization examples are employed to demonstrate the availability of HSA for finding the minimum weight optimum truss with multiple natural frequency constraints.

위성영상으로 DSM을 생성하기 위한 SGM Cost의 비교 (Comparison of SGM Cost for DSM Generation Using Satellite Images)

  • 이효성;박순용;권원석;한동엽
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.473-479
    • /
    • 2019
  • 본 연구는 ISPRS (International Society for Photogrammetry and Remote Sensing)에서 제공하는 스페인 Terrassa 지역의 WorldView-1 고해상도 스테레오 위성영상으로부터 DSM (Digital Surface Model) 제작을 위해 SGM을 적용하였다. SGM (Semi Global Matching)은 스테레오 영상에 대한 매칭 Cost를 여러 방향에서 계산하고, 계산된 Cost를 순차적으로 누적시킨 후, 누적된 Cost의 최소(또는 최대) 값에 해당하는 시차를 계산하는 영상매칭 알고리즘이다. SGM 적용을 위한 Cost는 MI (Mutual Information, NCC (Normalized Cross-Correlation), CT (Census Transform)를 적용하였으며, 각각의 Cost별 DSM에서 지형지물의 외곽선 표현결과 정확도와 그 성능을 제시하였다. 사용 영상과 실험 대상지역을 토대로, CT Cost 결과 정확도가 가장 우수하였으며, 외곽선 표현 또한 가장 선명하게 묘사되었다. 아울러 SGM 방법은 기존 소프트웨어에 비해 보다 세밀한 외곽선을 표현한 반면 수계지역에서는 많은 오류가 발생하였다.

위성영상과 GIS를 활용한 CO2 지중저장 후보지 선정 (Optimal Site Selection of Carbon Storage Facility using Satellite Images and GIS)

  • 홍미선;손홍규;정재훈;조형식;한수희
    • 대한원격탐사학회지
    • /
    • 제27권1호
    • /
    • pp.43-49
    • /
    • 2011
  • 지구온난화의 주범인 이산화탄소가 국제적으로 문제가 되고 있는 가운데, 이산화탄소의 농도 증가를 억제시키기 위해 이산화탄소를 포집하여 장기간 안정적으로 저장시킬 수 있는 탄소 포집 및 저장(Carbon Capture and Storage: CCS) 기술의 개발이 요구되고 있다. CCS 기술은 이산화탄소 저감 방안 중 가장 직접적이고 현실적인 방안으로 각광을 받고 있으나, 이산화탄소 최적 저장지의 선정 및 이산화탄소 지중저장이 야기할 수 있는 부수적인 영향에 대한 분석이 요구된다. 본 연구에서는 경상분지를 대상으로 GIS 기법을 이용하여 CCS 설비를 위한 적지 분석을 수행하고, 현황분석 및 법적분석을 수행하였다. 적지분석에는 지질도, 수치표고모형, 경사도, 토지피복도를 이용한 경중률 분석이 사용되었으며, 현황분석에는 고해상도 위성영상을 활용하였다. 그 결과 연구대상지내 이산화탄소 저장시설 설치를 위한 최적후보지가 선정되었으며, 마지막으로 법적분석에서는 탄소 저장과 관련된 현행 규정 및 탄소 저장시설의 설비 시 문제가 될 수 있는 각종 법적 사항을 조사하였다.

상하수도 미래비젼과 대한상하수도학회의 역할 (Future vision of the Korean society of water and wastewater in water sector)

  • 김건하;현인환
    • 상하수도학회지
    • /
    • 제32권6호
    • /
    • pp.551-557
    • /
    • 2018
  • Since its foundation in September 1986, the Korean Society of Water and Wastewater has made a significant contribution to the water sector in Korea over the past 30 years. The 30th anniversary commemorative committee reviewed the establishment goal of the society and its development strategy for organization and present the "Future Vision of Korean Society of Water and Wastewater" for the next 30 years. The future vision of the society is defined as "Aiming for the healthy life and preservation of the environment through the development of water and wastewater technology and experience". Promotion strategies for implementing the future vision are as follows: 1. Leading water and wastewater technology, 2. Develop water and wastewater policy, 3. Strengthen water and wastewater capacity, 4. Reinforce institutional governance. The driving target to be achieved through the implementation strategy is "To lead the global standards of water and wastewater." We also presented national issue, policy issue, and technical issues in the water sector. Climate change, unified Korea, water safety, and national welfare were selected as national issues related to water and wastewater. This approach was taken from the perspective of policy consumers such as citizens, civil society, experts, and local government/industry. By presenting policy issues and technical issues that address national issues, authors have proposed a future policy direction for the Korean Water and Wastewater Society to make critical contributions to national development.

해파리 퇴치용 자율 수상 로봇의 설계 및 구현 (Design and Implementation of Unmanned Surface Vehicle JEROS for Jellyfish Removal)

  • 김동훈;신재욱;김형진;김한근;이동화;이승목;명현
    • 로봇학회논문지
    • /
    • 제8권1호
    • /
    • pp.51-57
    • /
    • 2013
  • Recently, the number of jellyfish has been rapidly grown because of the global warming, the increase of marine structures, pollution, and etc. The increased jellyfish is a threat to the marine ecosystem and induces a huge damage to fishery industries, seaside power plants, and beach industries. To overcome this problem, a manual jellyfish dissecting device and pump system for jellyfish removal have been developed by researchers. However, the systems need too many human operators and their benefit to cost is not so good. Thus, in this paper, the design, implementation, and experiments of autonomous jellyfish removal robot system, named JEROS, have been presented. The JEROS consists of an unmanned surface vehicle (USV), a device for jellyfish removal, an electrical control system, an autonomous navigation system, and a vision-based jellyfish detection system. The USV was designed as a twin hull-type ship, and a jellyfish removal device consists of a net for gathering jellyfish and a blades-equipped propeller for dissecting jellyfish. The autonomous navigation system starts by generating an efficient path for jellyfish removal when the location of jellyfish is received from a remote server or recognized by a vision system. The location of JEROS is estimated by IMU (Inertial Measurement Unit) and GPS, and jellyfish is eliminated while tracking the path. The performance of the vision-based jellyfish recognition, navigation, and jellyfish removal was demonstrated through field tests in the Masan and Jindong harbors in the southern coast of Korea.

Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 고해상도 토양수분 산정 (Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Soil Moisture Data Assimilation Scheme)

  • 김상우;이태화;천범석;정영훈;장원석;서찬양;신용철
    • 한국농공학회논문집
    • /
    • 제62권6호
    • /
    • pp.11-20
    • /
    • 2020
  • We estimated the spatio-temporally distributed soil moisture using Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images and soil moisture data assimilation technique in South Korea. Soil moisture data assimilation technique can extract the hydraulic parameters of soils using observed soil moisture and GA (Genetic Algorithm). The SWAP (Soil Water Atmosphere Plant) model associated with a soil moisture assimilation technique simulates the soil moisture using the soil hydraulic parameters and meteorological data as input data. The soil moisture based on Sentinel-1A/B was validated and evaluated using the pearson correlation and RMSE (Root Mean Square Error) analysis between estimated soil moisture and TDR soil moisture. The soil moisture data assimilation technique derived the soil hydraulic parameters using Sentinel-1A/B based soil moisture images, ASOS (Automated Synoptic Observing System) weather data and TRMM (Tropical Rainfall Measuring Mission)/GPM (Global Precipitation Measurement) rainfall data. The derived soil hydrological parameters as the input data to SWAP were used to simulate the daily soil moisture values at the spatial domain from 2001 to 2018 using the TRMM/GPM satellite rainfall data. Overall, the simulated soil moisture estimates matched well with the TDR measurements and Sentinel-1A/B based soil moisture under various land surface conditions (bare soil, crop, forest, and urban).

SARS-CoV-2의 하수조사를 위한 대체 및 신속 검출 방법 (Alternative and Rapid Detection Methods for Wastewater Surveillance of SARS-CoV-2)

  • 제스민아터;이복진;이재엽;안창혁;;김일호
    • 한국물환경학회지
    • /
    • 제40권1호
    • /
    • pp.19-35
    • /
    • 2024
  • The global pandemic, coronavirus disease caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to the implementation of wastewater surveillance as a means to monitor the spread of SARS-CoV-2 prevalence in the community. The challenging aspect of establishing wastewater surveillance requires a well-equipped laboratory for wastewater sample analysis. According to previous studies, RT-PCR-based molecular tests are the most widely used and popular detection method worldwide. However, this approach for the detection or quantification of SARS-CoV-2 from wastewater demands a specialized laboratory, skilled personnel, expensive instruments, and a workflow that typically takes 6 to 8 hours to provide results for a few samples. Rapid and reliable alternative detection methods are needed to enable less-well-qualified practitioners to set up and provide sensitive detection of SARS-CoV-2 within wastewater at regional laboratories. In some cases, the structural and molecular characteristics of SARS-CoV-2 are unknown, and various strategies for the correct diagnosis of COVID-19 have been proposed by research laboratories. The ongoing research and development of alternative and rapid technologies, namely RT-LAMP, ELISA, Biosensors, and GeneXpert, offer a wide range of potential options not only for SARS-CoV-2 detection but also for other viruses. This study aims to discuss the effective regional rapid detection and quantification methods in community wastewater.

지중 저장 이산화탄소의 누출 위험도 평가를 위한 결함수 분석 (Fault Tree Analysis for Risk Assessment of CO2 Leakage from Geologic Storage)

  • 이상일;이상기;황진환
    • 환경영향평가
    • /
    • 제18권6호
    • /
    • pp.359-366
    • /
    • 2009
  • CCS (Carbon Capture and Storage) is considered as the most promising interim solution to deal with the greenhouse gas such as $CO_2$ responsible for global warming. Even though carefully chosen geologic formations are known to contain stored gas for a long time period, there are potential risks of leakage. Up to now, applicable risk assessment procedures for the leakage of $CO_2$ are not available. This study presents a basis for risk analysis applicable to a complex geologic storage system. It starts with the classification of potential leakage pathways. Receptors and the leakage effect on them are identified and quantified. Then, a fault tree is constructed, which yields the minimum cut set (i.e., the most vulnerable leakage pathway) and quantifies the probability of the leakage risk through the cut set. The methodology will provide a tool for risk assessment in a CCS project. The outcomes of the assessment will not only ensure the safety of the CCS system but also offer a reliable and efficient monitoring plan.

환경적 footprint 분석을 통한 토양경작법과 화학적산화법의 비교 (Comparison of Land Farming and Chemical Oxidation based on Environmental Footprint Analysis)

  • 김윤수;임형석;박재우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권3호
    • /
    • pp.7-14
    • /
    • 2015
  • In this study, land farming and chemical oxidation of a diesel-contaminated site is compared to evaluate the environmental impact during soil remediation using the Spreadsheet for Environmental Footprint Analysis by U.S. EPA. Each remediation process is divided into four phases, consisting of soil excavation, backfill and transportation (Phase 0), construction of remediation facility (Phase 1), remediation operation (Phase 2), and restoration of site and waste disposal (Phase 3). Environmental footprints, such as material use, energy consumption, air emission, water use and waste generation, are analyzed to find the way to minimize the environmental impact. In material use and waste generation, land farming has more environmental effect than chemical oxidation due to the concrete and backfill material used to construct land farming facility in Phase 1. Also, in energy use, land farming use about six times more energy than chemical oxidation because of cement production and fuel use of heavy machinery, such as backhoe and truck. However, carbon dioxide, commonly considered as important factor of environmental impact due to global warming effect, is emitted more in chemical oxidation because of hydrogen peroxide production. Water use of chemical oxidation is also 2.1 times higher than land farming.