• Title/Summary/Keyword: global bending

Search Result 141, Processing Time 0.021 seconds

Nonlinear analysis of 3D reinforced concrete frames: effect of section torsion on the global response

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.421-445
    • /
    • 2010
  • In this paper the formulation of an efficient frame element applicable for nonlinear analysis of 3D reinforced concrete (RC) frames is outlined. Interaction between axial force and bending moment is considered by using the fibre element approach. Further, section warping, effect of normal and tangential forces on the torsional stiffness of section and second order geometrical nonlinearities are included in the model. The developed computer code is employed for nonlinear static analysis of RC sub-assemblages and a simple approach for extending the formulation to dynamic cases is presented. Dynamic progressive collapse assessment of RC space frames based on the alternate path method is undertaken and dynamic load factor (DLF) is estimated. Further, it is concluded that the torsional behaviour of reinforced concrete elements satisfying minimum standard requirements is not significant for the framed structures studied.

Submicro-displacement Measuring System with Moire Interferometer and Application to the Themal Deformation of PBGA Package (무아레 간섭계 초정밀 변위 측정장치의 설계 및 PBGA 패키지 열변형 측정에의 응용)

  • Oh, Ki-Hwan;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1646-1655
    • /
    • 2004
  • A description of the basic principles of moire interferometry leads to the design of a eight-mirror four-beam interferometer for obtaining fringe patterns representing contour-maps of in-Plane displacements. The technique is implemented by the optical system using an environmental chamber for submicro-displacement mesurement. In order to estimate the reliability and applicabili쇼 of the system developed, the measurement of coefficient of thermal expansion (CTE) for a aluminium block is performed. Consequently, the system is applied to the measurement of thermal deformation of a WB-PBGA package assembly. Temperature dependent analyses of global and local deformations are presented to study the effect of the mismatch of CTE between materials composed of the package assemblies. Bending displacements of the packages and average strains of solder balls are documented. Thermal induced displacements calculated by FEM agree quantitatively with experimental results.

Seismic Response Analysis of Lightly Reinforced Concrete Shear Walls

  • Rhee, In-Kyu
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.73-82
    • /
    • 2010
  • Global and local behaviors of a lightly RC shear walls are investigated in this paper. For the sake of cyclic behaviors, nominal ground accelerations of 0.15 g, 0.40 g and 0.55 g which associated with natural periods of the walls are applied as listed in French CAMUS-2000 shake table test. Modified Kent & Park model, Drucker-Prager model for concrete material and $Giufr\acute{e}$-Menegotto-Pinto model for rebar are used for time history analyses using fiber/solids elements respectively. Alternatively, Eulerian beam analysis are discussed by imposing inelastic hinges at the most possible plastic hinge location using modified Takeda's trilinear model with stiffness reduction. Relative displacements, base shears, bending moments of 5-story shear building with 36-tons of mass under bi-lateral seismic excitation are extracted and compared with EC-8, PS-92 and KBC-09 provisions. Multi-scaled degradation process; material damage, elemental fracture and structural failure in turn is discussed in the view of numerical accuracy, efficiency and limitation depending on three different model-based analyses.

  • PDF

Performance of R/C Bridge Piers under Seismic Loads

  • Kang, Hong-Duk;Kang, Young-Jong;Yoon, Young-Soo
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 2000
  • A research program was initiated at the University of Colorado at Boulder to develop computational models that can be used for seismic risk assessments. To assess the overall performance of bridge structures including the nonlinear effects of bridge piers, the research focused on two levels of capabilities, i.e. global and local pier levels. A 3-D concrete model was used to evaluate the behavior of individual piers under combined axial, bending, and shear loadings using 3-D finite element analysis. Whereby the response curve reached the peak strength of the R/C column under the constant axial and monotonically increasing lateral loads. Experimental results on reinforced concrete bridge piers, which were obtained at the University of California at San Diego were used to validate the seismic performance of bridge piers at the two levels, globa1 and local.

  • PDF

Effect of Local Wall Thinning Defect on the Collapse Moment of Elbow (엘보우의 붕괴모멘트에 미치는 국부 감육결함의 영향)

  • Kim, Jin-Weon;Kim, Tae-Soon;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.402-409
    • /
    • 2004
  • The purpose of this study is to investigate the effect of local wall thinning on the collapse of elbow subjected to internal pressure and bending moment. Thus, the nonlinear three-dimensional finite element analyses were performed to obtain the collapse moment of elbow containing various wall thinning defects located at intrados and extrados under two loading modes (closing and opening modes) with internal pressure. From the results of analysis, the effect of wall thinning defect on the global moment-rotation behavior of elbow was discussed, and the dependence of collapse moment of elbow on wall thinning depth, length, and circumferential angle was investigated under different loading mode and defect location.

Vibration and Damping Analysis of Cross-ply Plate Strip Including Layer-wise In-plane Displacements (면내 변위의 변화를 고려한 Cross-ply 적층판의 진동 및 감쇠해석)

  • Koo, Kyo-Nam;Lee, in
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.305-315
    • /
    • 1992
  • In order to investigate the effects of layer-wise in-plane displacements on vibration and damping characteristics of composite laminated plates, the finite element method based on the generalized laminated plate theory(GLPT) has been formulated. Specific damping capacity of each mode was obtained by modal strain energy method. To see the effect of transverse shear on deformation, the strain energy of stress components was computed. The accuracy of this study was examined for the cylindrical bending vibration of cross-ply plate strip. The results were very accurate compared with 3-D solutions. The numerical results show that through-thickness variation of in-plane displacements has not so much influence on the natural frequency, but has a great influence on the damping of composite plates, especially on the damping of thick composite plates since the damping is affected by local behavior while the natural frequency is affected by global behavior.

  • PDF

Damage Detection of Ship Structures Using Wavelet Transformation (웨이블렛 변환 기법을 이용한 선체 구조의 결함진단)

  • Lee, Dae-Sung;Cho, Dae-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.815-820
    • /
    • 2000
  • The early damage detection of large structures is very important to prevent the disaster due to its global failure. In this paper, a damage detection method of the beam-analogy structure based on the wavelet transformation of mode shape is presented. This can effectively detect the singularity of mode shape caused to the inconsistency of bending moment and shear force at the damaged part using the discrete wavelet and its inverse transforms. To investigate the validity and the applicability of the presented damage detection method, numerical simulation and experiment are carried out for the idealized beam and the real ship structures.

  • PDF

Fatigue life evaluation of socket welded pipe with incomplete penetration defect: I-test and FE analysis

  • Lee, Dong-Min;Kim, Seung-Jae;Lee, Hyun-Jae;Kim, Yun-Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3852-3859
    • /
    • 2021
  • This paper presents experimental and numerical analysis results regarding the effects of an incomplete penetration defect on the fatigue lives of socket welded pipes. For the experiment, four-point bending fatigue tests with various defect geometries (defect depth and circumferential length) were performed, and test results are presented in terms of stress-life data. The results showed that for circumferentially short defects, the fatigue life tends to increase with increasing crack depth, but for longer defects, the trend becomes the opposite. Finite element analysis showed that for short defects, the maximum principal stress decreases with increases in crack depth. For a longer defect, the opposite trend was found. Furthermore, the maximum principal stress tends to increase with an increase in defect length regardless of the defect depth.

Action Recognition Method in Sports Video Shear Based on Fish Swarm Algorithm

  • Jie Sun;Lin Lu
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.554-562
    • /
    • 2023
  • This research offers a sports video action recognition approach based on the fish swarm algorithm in light of the low accuracy of existing sports video action recognition methods. A modified fish swarm algorithm is proposed to construct invariant features and decrease the dimension of features. Based on this algorithm, local features and global features can be classified. The experimental findings on the typical sports action data set demonstrate that the key details of sports action can be successfully retained by the dimensionality-reduced fusion invariant characteristics. According to this research, the average recognition time of the proposed method for walking, running, squatting, sitting, and bending is less than 326 seconds, and the average recognition rate is higher than 94%. This proves that this method can significantly improve the performance and efficiency of online sports video motion recognition.

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.