• Title/Summary/Keyword: global bending

Search Result 141, Processing Time 0.408 seconds

Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

  • Chuang, Zhenju;Liu, Shewen;Lu, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.367-375
    • /
    • 2020
  • This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.

Cost and reliability of retrofit alternatives for schools located on seismic zones

  • De Leon-Escobedo, David;Garcia-Manjarrez, Jose Luis
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.505-514
    • /
    • 2021
  • A formulation based on structural reliability and cost effectiveness is proposed to provide recommendations to select the best retrofit strategy for schools with reinforced concrete frames and masonry walls, among three proposed alternatives. The cost calculation includes the retrofit cost and the expected costs of failure consequences. Also, the uncertainty of the seismic hazard is considered for each school site. The formulation identifies the potential failure modes, among shear and bending forces for beams, and flexure-compression forces for columns, for each school, and the seismic damages suffered by the schools after the earthquake of September 17, 2017 are taken into account to calibrate the damaged conditions per school. The school safety level is measured through its global failure probability, instead of only the local failure probability. The proposed retrofit alternatives are appraised in terms of the cost/benefit balance under future earthquakes, for the respective site seismic hazard, as opposed to the current practice of just restoring the structure original resistance. The best retrofit is the one that corresponds to the minimum value of the expected life cycle cost. The study, with further developments, may be used to develop general recommendations to retrofit schools located at seismic zones.

Carbon fiber-based long-gauge sensors monitoring the flexural performance of FRP-reinforced concrete beams

  • Mohamed A. Saifeldeen;Nariman Fouad
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.4
    • /
    • pp.299-314
    • /
    • 2023
  • Long-gauge carbon fiber line (CFL) sensors have received considerable attention in the past decade. However, there is still a need for an in-depth investigation of their measuring accuracy. This study investigates the accuracy of carbon fiber line sensors to monitor and differentiate the flexural behavior of two beams, one reinforced with steel bars alone and the other reinforced with steel and basalt fiber-reinforced polymer bars. A distributed set of long-gauge carbon fiber line, Fiber Bragg Grating (FBG), and traditional strain gauge sensors was mounted on the tensile concrete surface of the studied beams to compare the results and assess the accuracies of the proposed sensors. The test beams were loaded monotonically under four-point bending loading until failure. Results indicated the importance of using long-gauge sensors in providing useful, accurate, and reliable information regarding global structural behavior, while point sensors are affected by local damage and strain concentrations. Furthermore, long-gauge carbon fiber line sensors demonstrated good agreement with the corresponding Fiber Bragg Grating sensors with acceptable accuracy, thereby exhibiting potential for application in monitoring the health of large-scale structures.

Joint Displacement Resistance Evaluation of Waterproofing Material in Railroad Bridge Deck (철도교량상판 방수재료 선정을 위한 균열거동저항 성능평가)

  • Bae, Young-Min;Oh, Dong-Cheon;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.683-692
    • /
    • 2020
  • A joint displacement resistance evaluation method for selecting waterproofing materials in railway bridge decks is proposed. The displacement range for an evaluation is determined by finite element method (FEM) analysis of a load case based on an existing high-speed PSC Girder Box railroad bridge structure. The FEM analysis results were used to calculate the minimum joint displacement range to be applied during testing (approximately 1.5 mm). For the evaluation, four commonly used waterproofing membrane types, cementitious slurry coating (CSC), polyurethane coating system (PCS), self-adhesive asphalt sheet (SAS), and composite asphalt sheet (CAS), were tested, with five specimens of each membrane type. The joint displacement width range conditions, including the minimum displacement range obtained from FEM analysis, were set to be the incrementing interval, from 1.5, 3.0, 4.5, and 6.0 mm. The proposal for the evaluation criteria and the specimen test results demonstrated how the evaluation method is important for the sustainability of high-speed railway bridges.

Rotordynamic Performance Measurements and Predictions of a FCEV Air Compressor Supported on Gas Foil Bearings (가스 포일 베어링으로 지지되는 연료전지 전기자동차용 공기압축기의 회전체동역학적 성능 측정 및 예측)

  • Hwang, Sung Ho;Moon, Chang Gook;Kim, Tae Ho;Lee, Jongsung;Cho, Kyung Seok;Ha, Kyoung-Ku;Lee, Chang Ha
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • The paper presents the rotordynamic performance measurements and model predictions of a fuel cell electric vehicle (FCEV) air compressor supported on gas foil bearings (GFBs). The rotor has an impeller on one end and a thrust runner on the other end. The front (impeller side) and rear (thrust side) gas foil journal bearings (GFJBs) are located between the impeller and thrust runner to support the radial loads, and a pair of gas foil thrust bearings are located on both sides of the thrust runner to support the axial loads. The test GFJBs have a partial arc shim foil installed between the top foil and bump strip layers to enhance hydrodynamic pressure generation. During the rotordynamic performance tests, two sets of orthogonally installed eddy-current displacement sensors measure the rotor radial motions at the rotor impeller and thrust ends. A series of speed-up and coast-down tests to 100k rpm demonstrates the dominant synchronous (1X) rotor responses to imbalance masses without noticeable subsynchronous motions, which indicates a rotordynamically stable rotor-GFB system. Finite element analysis of the rotor determines the rotor free-free (bending) natural modes and frequencies well beyond the maximum rotating frequency. The predicted damped natural frequencies and damping ratios of the rotor-GFB system reveal rotordynamic stability over the speeds of interest. The imbalance response predictions show that the predicted critical speeds and rotor amplitudes strongly agree with the test measurements, thus validating the developed rotordynamic model.

Study on the Mechanism of Mechanical Property Enhancement in Carbon Fiber/Flax Fiber Hybrid Composite Materials (탄소섬유/아마섬유 하이브리드 복합재료의 기계적 물성 향상 기구에 관한 연구)

  • Jamil Abuzar;Dong-Woo Lee;Jung-Il Song
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.281-287
    • /
    • 2023
  • Environmental pollution from waste and the climate crisis, due to rising global average temperatures, are reaching critical levels threatening human survival. Research is ongoing across various fields to solve this problem, with a key focus on developing eco-friendly, carbon-neutral materials. Our study aimed to integrate natural fibers, known for their environmentally friendly properties and lower carbon emissions, with carbon fibers. In general, combining high-strength and low-strength materials results in intermediate properties. However, we found that certain properties in our study exceeded those of typical carbon fiber composite materials. To validate this, we produced both carbon fiber composite materials and carbon fiber/natural fiber hybrid composite materials. We then compared their mechanical properties using a range of specific tests. Our results revealed that the hybrid composite material exhibited superior bending strength and fracture toughness compared to the carbon fiber composite material. We also identified the underlying mechanisms contributing to this strength enhancement. This breakthrough suggests that the use of hybrid composite materials may allow the production of stronger structures. Moreover, this can play a significant role in mitigating environmental pollution and the climate crisis by reducing carbon emissions, a major contributing factor to these global challenges.

Hydro-forming and Simulation of Cross Member Parts for Automotive Engine Cradle (차량 엔진크레들용 크로스멤버 부품의 하이드로-포밍가공 및 해석)

  • Kim, Kee-Joo;Lee, Yong-Heon;Bae, Dae-Sung;Sung, Chang-Won;Baik, Young-Nam;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.98-103
    • /
    • 2009
  • The environment and energy related problem has become one of the most important global issues in recent years. One of the most effective ways of improving the fuel efficiency of automobiles is the weight reduction. In order to obtain this goal the hydroforming technology has been adapting for the high strength steel and its application is being widened. In present study, the chassis components (mainly cross members of engine cradle) simulation and development by hydroforming technology to apply high strength steel having tensile strength of 440 MPa grade is studied. In the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydroformability in details. Overall possibility of hydroformable chassis parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, performing and hydroforming. In the die design stage, all the components of prototyping tool were designed and interference with press was investigated from the point of geometry and thinning.

A Study on the Comparison of Triangular and Quadrilateral Elements for the Analysis of 3 Dimensional Plate Structures (3차원 판구조물 해석을 위한 삼각형요소와 사각형 요소의 비교에 관한 연구)

  • 왕지석;김유해;이우수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.344-352
    • /
    • 2002
  • In the analysis of the 3 dimensional plate structures by the finite element method, the triangular elements are generally used for the global stiffness matrix of the analyzed system. But the triangular elements of the plates have some problems in the process of formulation and in the precision of analysis. The formulation of the finite element method to analyze 3 dimensional plate structures using quadrilateral elements is presented in this paper. The degree of freedom off nodal point is 6, that is, the displacements in the direction off-y-z is and the rotations about x-y-z axis and then the degree of freedom off element is 24. For the comparison of the analysis using triangular elements and quadrilateral elements, the rectangular plates subjected to the uniform load and a concentrated load on the centroid of the plate, for which the theoretical solutions have been obtained, are analyzed. The calculated deflections of the rectangular plates using the finite element method by the triangular elements and the quadrilateral elements are also compared with the deflections of the plates calculated by theoretical solutions. The defections of the rectangular plates calculated by the finite element method using the quadrilateral elements are closer to the theoretical solutions than the defections calculated by the finite element method using the triangular elements. The deflection of the centroid of plate, calculated by the finite element method, converges to that of theoretical solution as the number of elements is increased. This convergence is much more rapid for the case of using the quakrilateral elements than fir the case of using triangular elements.

Elasto-plastic behaviour of structural laminated timber joint by flange thickness of H beam (H형강 플랜지 두께변화에 따른 구조용집성재 접합부의 탄소성거동)

  • Kim, Soon Chul;Yang, Il Seung
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.385-393
    • /
    • 2006
  • In Korea, the effective utilization of wod structure is encour aged to preserve natural resources and the global environment.ote demand for wod. The efective combination of structural la minated timber and other materials is expected to extend the potential of building structures. This research examines the moment resis tance-type jointing method using structural laminated timber and H-section stel aiming at development of the two-direction frame for lar ge 9 mm and 12 mm) of the H section. Therefore, we conducted the experiment with bending test of the joints to investigate the s tifnes, strength, strain distributions of laminated timber an d of the flange of the H section, and failure paterns. As shown in the results, t he joints with a flange thicknes of 9 mm and 12 m have superi or strength with a flange thicknes of 9 mm and 12 mm were very large, whic h confirmed the high level of energy absorption of such structure s.

Strength Assessment of 8m-class High-Speed Planing Leisure Boat (8m급 고속 활주선형 레저보트의 구조강도 평가)

  • Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.418-423
    • /
    • 2018
  • Recently, research and development of high-value leisure vessels has been carried out in Korea to revitalize the marine leisure industry and tap into the global maritime leisure market. FRP composite materials, which have excellent physical properties and are available for the manufacture of light hulls, are used widely. One of the most important design technologies is to secure structural safety of leisure vessels made from FRP composite materials. In this study, the structural strength was assessed for the design of an 8-meter high-speed planing leisure boat made from FRP composite materials. The design loads to verify the structural safety were calculated according to the rules for the classification of high speed light craft (KR, 2015), and structural analysis was conducted using a finite element model composed of an isotropic shell element, which has equivalent bending rigidity with the FRP sandwich panel. The analysis results were compared with the results of the strength test for fabricated specimens, and all internal structural components are sufficiently satisfied with the structural strength.