• Title/Summary/Keyword: global approximation

Search Result 146, Processing Time 0.026 seconds

LOCAL EXISTENCE AND EXPONENTIAL DECAY OF SOLUTIONS FOR A NONLINEAR PSEUDOPARABOLIC EQUATION WITH VISCOELASTIC TERM

  • Nhan, Nguyen Huu;Nhan, Truong Thi;Ngoc, Le Thi Phuong;Long, Nguyen Thanh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.35-64
    • /
    • 2021
  • In this paper, we investigate an initial boundary value problem for a nonlinear pseudoparabolic equation. At first, by applying the Faedo-Galerkin, we prove local existence and uniqueness results. Next, by constructing Lyapunov functional, we establish a sufficient condition to obtain the global existence and exponential decay of weak solutions.

FORMALISM FOR THE SUBHALO MASS FUNCTION IN THE TIDAL-LIMIT APPROXIMATION

  • LEE JOUNGHUN
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.161-164
    • /
    • 2005
  • We present a theoretical formalism by which the global and the local mass functions of dark matter substructures (dark subhalos) can be analytically estimated. The global subhalo mass function is defined to give the total number density of dark subhalos in the universe as a function of mass, while the local subhalo mass function counts only those sub halos included in one individual host halo. We develop our formalism by modifying the Press-Schechter theory to incorporate the followings: (i) the internal structure of dark halos; (ii) the correlations between the halos and the subhalos; (iii) the subhalo mass-loss effect driven by the tidal forces. We find that the resulting (cumulative) subhalo mass function is close to a power law with the slope of ${\~}$ -1, that the subhalos contribute approximately $10\%$ of the total mass, and that the tidal stripping effect changes the subhalo mass function self-similarly, all consistent with recent numerical detections.

Local A Posteriori Error Estimates for Obstacle Contact Problems (장애물 접촉문제에서의 지역 A Posteriori 오차계산)

  • 이춘열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.120-127
    • /
    • 1998
  • Differential inequalities occurring in problems of obstacle contact problems are recast into variational inequalities and analyzed by finite element methods. A new a posteriori error estimator, which is essential in adaptive finite element method, is introduced to capture the errors in finite element approximations of these variational inequalities. In order to construct a posteriori error estimates, saddle point problems are introduced using Lagrange parameters and upper bounds are provided. The global upper bound is localized by a special mixed formulation, which leads to upper bounds of the element errors. A numerical experiment is performed on an obstacle contact problem to check the effectivity index both in a local and a global sense.

  • PDF

Global stabilization of three-dimensional flexible marine risers by boundary control

  • Do, K.D.
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.171-194
    • /
    • 2011
  • A method to design a boundary controller for global stabilization of three-dimensional nonlinear dynamics of flexible marine risers is presented in this paper. Equations of motion of the risers are first developed in a vector form. The boundary controller at the top end of the risers is then designed based on Lyapunov's direct method. Proof of existence and uniqueness of the solutions of the closed loop control system is carried out by using the Galerkin approximation method. It is shown that when there are no environmental disturbances, the proposed boundary controller is able to force the riser to be globally exponentially stable at its equilibrium position. When there are environmental disturbances, the riser is stabilized in the neighborhood of its equilibrium position by the proposed boundary controller.

Improving the Performances of the Neural Network for Optimization by Optimal Estimation of Initial States (초기값의 최적 설정에 의한 최적화용 신경회로망의 성능개선)

  • 조동현;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.8
    • /
    • pp.54-63
    • /
    • 1993
  • This paper proposes a method for improving the performances of the neural network for optimization by an optimal estimation of initial states. The optimal initial state that leads to the global minimum is estimated by using the stochastic approximation. And then the update rule of Hopfield model, which is the high speed deterministic algorithm using the steepest descent rule, is applied to speed up the optimization. The proposed method has been applied to the tavelling salesman problems and an optimal task partition problems to evaluate the performances. The simulation results show that the convergence speed of the proposed method is higher than conventinal Hopfield model. Abe's method and Boltzmann machine with random initial neuron output setting, and the convergence rate to the global minimum is guaranteed with probability of 1. The proposed method gives better result as the problem size increases where it is more difficult for the randomized initial setting to give a good convergence.

  • PDF

Analysis of local vibrations in the stay cables of an existing cable-stayed bridge under wind gusts

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.513-534
    • /
    • 2008
  • This paper examines local vibrations in the stay cables of a cable-stayed bridge subjected to wind gusts. The wind loads, including the self-excited load and the buffeting load, are converted into time-domain values using the rational function approximation and the multidimensional autoregressive process, respectively. The global motion of the girder, which is generated by the wind gusts, is analyzed using the modal analysis method. The local vibration of stay cables is calculated using a model in which an inclined cable is subjected to time-varying displacement at one support under global vibration. This model can consider both forced vibration and parametric vibration. The response characteristics of the local vibrations in the stay cables under wind gusts are described using an existing cable-stayed bridge. The results of the numerical analysis show a significant difference between the combined parametric and forced vibrations and the forced vibration.

Cell Hawing Control with Fuzzified Cell Boundaries (셀 경계의 퍼지화에 의한 셀 매핑 제어)

  • 임영빈;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.386-386
    • /
    • 2000
  • Cell mapping is a powerful computational technique for analyzing the global behavior of nonlinear dynamic systems. It simplifies the task of analyzing a continuous phase space by partitioning it into a finite number of disjoint cells and approximating system trajectories as cell transitions. A cell map for the system is then constructed based on the allowable control actions. Next search algorithms are employed to identify the optimal or near-optimal sequence(s) of control actions required to drive the system from each cell to the target cell by an "unravelling algorithm." Errors resulting from the cell center-point approximation could be reduced and eliminated by fuzzifying the bonders of cells. The dynamic system control method based on the cell mapping has been demonstrated for a motor control problem.l problem.

  • PDF

Adaptive Fuzzy Sliding-Mode Controller for Nonaffine Nonlinear Systems (비어파인 비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Lyoo, Young-Jae;Moon, Chae-Joo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.697-700
    • /
    • 2005
  • An adaptive fuzzy sliding-mode controller (SMC) for uncertain or ill-defined single-input single-output (SISO) nonaffine nonlinear systems is proposed. By using the universal approximation property of the fuzzy logic system (FLS), it is tuned on-line to cancel the unknown system nonlinearity. We adopt a self-structuring FLS to guarantee global stability of the closed-loop system rather than semi=global boundedness. The control and adaptive laws are derived so that the estimated fuzzy parameters are bounded and the sliding condition is satisfied.

  • PDF

Optimal design of composite laminates for minimizing delamination stresses by particle swarm optimization combined with FEM

  • Chen, Jianqiao;Peng, Wenjie;Ge, Rui;Wei, Junhong
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.407-421
    • /
    • 2009
  • The present paper addresses the optimal design of composite laminates with the aim of minimizing free-edge delamination stresses. A technique involving the application of particle swarm optimization (PSO) integrated with FEM was developed for the optimization. Optimization was also conducted with the zero-order method (ZOM) included in ANSYS. The semi-analytical method, which provides an approximation of the interlaminar normal stress of laminates under in-plane load, was used to partially validate the optimization results. It was found that optimal results based on ZOM are sensitive to the starting design points, and an unsuitable initial design set will lead to a result far from global solution. By contrast, the proposed method can find the global optimal solution regardless of initial designs, and the solutions were better than those obtained by ZOM in all the cases investigated.

Shape Reconstruction from Unorganized Cloud of Points using Adaptive Domain Decomposition Method (적응적 영역분할법을 이용한 임의의 점군으로부터의 형상 재구성)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.89-99
    • /
    • 2006
  • In this paper a new shape reconstruction method that allows us to construct surface models from very large sets of points is presented. In this method the global domain of interest is divided into smaller domains where the problem can be solved locally. These local solutions of subdivided domains are blended together according to weighting coefficients to obtain a global solution using partition of unity function. The suggested approach gives us considerable flexibility in the choice of local shape functions which depend on the local shape complexity and desired accuracy. At each domain, a quadratic polynomial function is created that fits the points in the domain. If the approximation is not accurate enough, other higher order functions including cubic polynomial function and RBF(Radial Basis Function) are used. This adaptive selection of local shape functions offers robust and efficient solution to a great variety of shape reconstruction problems.