• Title/Summary/Keyword: global approximation

Search Result 146, Processing Time 0.026 seconds

Indirect Adaptive Regulator Design Based on TSK Fuzzy Models

  • Park Chang-Woo;Choi Jun-Hyuk;Sung Ha-Gyeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • In this paper, we have proposed a new adaptive fuzzy control algorithm based on Takagi-Sugeno fuzzy model. The regulation problem for the uncertain SISO nonlinear system is solved by the proposed algorithm. Using the advanced stability theory, the stability of the state, the control gain and the parameter approximation error is proved. Unlike the existing feedback linearization based methods, the proposed algorithm can guarantee the global stability in the presence of the singularity in the inverse dynamics of the plant. The performance of the proposed algorithm is demonstrated through the problem of balancing and swing-up of an inverted pendulum on a cart.

Design of Fuzzy-Neural Networks Structure using HCM and Optimization Algorithm (HCM 및 최적 알고리즘을 이용한 퍼지-뉴럴네트워크구조의 설계)

  • Yoon, Ki-Chang;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.654-656
    • /
    • 1998
  • This paper presents an optimal identification method of nonlinear and complex system that is based on fuzzy-neural network(FNN). The FNN used simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM Algorithm to find initial parameters of membership function. And then to obtain optimal parameters, we use the genetic algorithm. Genetic algorithm is a random search algorithm which can find the global optimum without converging to local optimum. The parameters such as membership functions, learning rates and momentum coefficients are easily adjusted using the genetic algorithms. Also, the performance index with weighted value is introduced to achieve a meaningful balance between approximation and generalization abilities of the model. To evaluate the performance of the FNN, we use the time series data for 9as furnace and the sewage treatment process.

  • PDF

UTLIZATION OF FUZZY AND VOLETTRA ALGORITHM FOR 3D BATHYMETRY SIMULATION FROM TOPSAR POLARISED DATA

  • Marghany, Maged;Hussien, Mohd. Lokman
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.432-434
    • /
    • 2003
  • The main objective of this research is to utilize the parallel Fuzzy arithmetic for constructing ocean bathymetry from polarized remote sensing data such as TOPSAR image. In doing so, the parallel library for Fuzzy arithmetic has been developed. Three- dimensional surface modeling consisted of Volettra model, non-linear model which construct a global topological structure between the data points, used to support an approximation of real surface. The output of the parallel library was a digital terrain model for bathymetry along the coastal waters of Kuala Terengganu Malaysia. This paper describes the principles behind the Fuzzy algorithm, indicates for what type of application it might be useful, notes on the accuracy and gives an example of an application.

  • PDF

Onset of Buoyancy-Driven Convection in a Fluid-Saturated Porous Layer Bounded by Semi-infinite Coaxial Cylinders

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.723-729
    • /
    • 2019
  • A theoretical analysis was conducted of convective instability driven by buoyancy forces under transient temperature fields in an annular porous medium bounded by coaxial vertical cylinders. Darcy's law and Boussinesq approximation are used to explain the characteristics of fluid motion and linear stability theory is employed to predict the onset of buoyancy-driven motion. The linear stability equations are derived in a global domain, and then cast into in a self-similar domain. Using a spectral expansion method, the stability equations are reformed as a system of ordinary differential equations and solved analytically and numerically. The critical Darcy-Rayleigh number is founded as a function of the radius ratio. Also, the onset time and corresponding wavelength are obtained for the various cases. The critical time becomes smaller with increasing the Darcy-Rayleigh number and follows the asymptotic relation derived in the infinite horizontal porous layer.

EXISTENCE AND DECAY PROPERTIES OF WEAK SOLUTIONS TO THE INHOMOGENEOUS HALL-MAGNETOHYDRODYNAMIC EQUATIONS

  • HAN, PIGONG;LEI, KEKE;LIU, CHENGGANG;WANG, XUEWEN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.76-107
    • /
    • 2022
  • In this paper, we study the temporal decay of global weak solutions to the inhomogeneous Hall-magnetohydrodynamic (Hall-MHD) equations. First, an approximation problem and its weak solutions are obtained via the Caffarelli-Kohn-Nirenberg retarded mollification technique. Then, we prove that the approximate solutions satisfy uniform decay estimates. Finally, using the weak convergence method, we construct weak solutions with optimal decay rates to the inhomogeneous Hall-MHD equations.

SMOOTH SINGULAR VALUE THRESHOLDING ALGORITHM FOR LOW-RANK MATRIX COMPLETION PROBLEM

  • Geunseop Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.427-444
    • /
    • 2024
  • The matrix completion problem is to predict missing entries of a data matrix using the low-rank approximation of the observed entries. Typical approaches to matrix completion problem often rely on thresholding the singular values of the data matrix. However, these approaches have some limitations. In particular, a discontinuity is present near the thresholding value, and the thresholding value must be manually selected. To overcome these difficulties, we propose a shrinkage and thresholding function that smoothly thresholds the singular values to obtain more accurate and robust estimation of the data matrix. Furthermore, the proposed function is differentiable so that the thresholding values can be adaptively calculated during the iterations using Stein unbiased risk estimate. The experimental results demonstrate that the proposed algorithm yields a more accurate estimation with a faster execution than other matrix completion algorithms in image inpainting problems.

Design the Structure of Scaling-Wavelet Mixed Neural Network (스케일링-웨이블릿 혼합 신경회로망 구조 설계)

  • Kim, Sung-Soo;Kim, Yong-Taek;Seo, Jae-Yong;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.511-516
    • /
    • 2002
  • The neural networks may have problem such that the amount of calculation for the network learning goes too big according to the dimension of the dimension. To overcome this problem, the wavelet neural networks(WNN) which use the orthogonal basis function in the hidden node are proposed. One can compose wavelet functions as activation functions in the WNN by determining the scale and center of wavelet function. In this paper, when we compose the WNN using wavelet functions, we set a single scale function as a node function together. We intend that one scale function approximates the target function roughly, the other wavelet functions approximate it finely During the determination of the parameters, the wavelet functions can be determined by the global search for solutions suitable for the suggested problem using the genetic algorithm and finally, we use the back-propagation algorithm in the learning of the weights.

On the Exact Cycle Time of Failure Prone Multiserver Queueing Model Operating in Low Loading (낮은 교통밀도 하에서 서버 고장을 고려한 복수 서버 대기행렬 모형의 체제시간에 대한 분석)

  • Kim, Woo-Sung;Lim, Dae-Eun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • In this paper, we present a new way to derive the mean cycle time of the G/G/m failure prone queue when the loading of the system approaches to zero. The loading is the relative ratio of the arrival rate to the service rate multiplied by the number of servers. The system with low loading means the busy fraction of the system is low. The queueing system with low loading can be found in the semiconductor manufacturing process. Cluster tools in semiconductor manufacturing need a setup whenever the types of two successive lots are different. To setup a cluster tool, all wafers of preceding lot should be removed. Then, the waiting time of the next lot is zero excluding the setup time. This kind of situation can be regarded as the system with low loading. By employing absorbing Markov chain model and renewal theory, we propose a new way to derive the exact mean cycle time. In addition, using the proposed method, we present the cycle times of other types of queueing systems. For a queueing model with phase type service time distribution, we can obtain a two dimensional Markov chain model, which leads us to calculate the exact cycle time. The results also can be applied to a queueing model with batch arrivals. Our results can be employed to test the accuracy of existing or newly developed approximation methods. Furthermore, we provide intuitive interpretations to the results regarding the expected waiting time. The intuitive interpretations can be used to understand logically the characteristics of systems with low loading.

A Study for Determining the Best Number of Clusters on Temporal Data (Temporal 데이터의 최적의 클러스터 수 결정에 관한 연구)

  • Cho Young-Hee;Lee Gye-Sung;Jeon Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.1
    • /
    • pp.23-30
    • /
    • 2006
  • A clustering method for temporal data takes a model-based approach. This uses automata based model for each cluster. It is necessary to construct global models for a set of data in order to elicit individual models for the cluster. The preparation for building individual models is completed by determining the number of clusters inherent in the data set. In this paper, BIC(Bayesian Information Criterion) approximation is used to determine the number clusters and confirmed its applicability. A search technique to improve efficiency is also suggested by analyzing the relationship between data size and BIC values. A number of experiments have been performed to check its validity using artificially generated data sets. BIC approximation measure has been confirmed that it suggests best number of clusters through experiments provided that the number of data is relatively large.

  • PDF

Structure of the Mixed Neural Networks Based On Orthogonal Basis Functions (직교 기저함수 기반의 혼합 신경회로망 구조)

  • Kim, Seong-Joo;Seo, Jae-Yong;Cho, Hyun-Chan;Kim, Seong-Hyun;Kim, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.6
    • /
    • pp.47-52
    • /
    • 2002
  • The wavelet functions are originated from scaling functions and can be used as activation function in the hidden node of the network by deciding two parameters such as scale and center. In this paper, we would like to propose the mixed structure. When we compose the WNN using wavelet functions, we propose to set a single scale function as a node function together. The properties of the proposed structure is that while one scale function approximates the target function roughly, the other wavelet functions approximate it finely. During the determination of the parameters, the wavelet functions can be determined by the global search algorithm such as genetic algorithm to be suitable for the suggested problem. Finally, we use the back-propagation algorithm in the learning of the weights.