• Title/Summary/Keyword: glioma risk

Search Result 33, Processing Time 0.024 seconds

Cyclin D1 Gene G870A Variants and Primary Brain Tumors

  • Zeybek, Umit;Yaylim, Ilhan;Ozkan, Nazli Ezgi;Korkmaz, Gurbet;Turan, Saime;Kafadar, Didem;Cacina, Canan;Kafadar, Ali Metin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4101-4106
    • /
    • 2013
  • Alterations of cyclin D1, one of the main regulators of the cell cycle, are known to be involved in various cancers. The CCDN1 G870A polymorphism causes production of a truncated variant with a shorter half-life and thus thought to impact the regulatory effect of CCDN1. The aim of the present study was to contribute to existing results to help to determine the prognostic value of this specific gene variant and evaluate the role of CCDN1 G870A polymorphism in brain cancer susceptibility. A Turkish study group including 99 patients with primary brain tumors and 155 healthy controls were examined. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism analysis. The CCDN1 genotype frequencies in meningioma, glioma and control cases were not significantly different (p>0.05). No significant association was detected according to clinical parameters or tumor characteristics; however, a higher frequency of AG genotype was recorded within patients with astrocytic or oligoastrocytic tumors. A significant association between AG genotype and gliobilastoma multiforme (GBM) was recorded within the patients with glial tumors (p value=0.048 OR: 1.87 CI% 1.010-3.463). According to tumor characteristics, no statistically significant difference was detected within astrocytic, oligoasltrocytic tumors and oligodentrioglias. However, patients with astrocytic astrocytic or oligoastrocytic tumors showed a higher frequency of AG genotype (50%) when compared to those with oligodendrioglial tumors (27.3%). Our results indicate a possible relation between GBM formation and CCDN1 genotype.

Lack of Association Between GSTM1 and GSTT1 Polymorphisms and Brain Tumour Risk

  • Sima, Xiu-Tian;Zhong, Wei-Ying;Liu, Jian-Gang;You, Chao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.325-328
    • /
    • 2012
  • Objective: Glutathione S-transferases (GSTs) are important enzymes that are involved in detoxification of environmental carcinogens. Molecular epidemiological studies have been conducted to investigate the association between GSTM1 and GSTT1 homozygous deletion polymorphisms and brain tumours but results have been conflicting. The aim of this study was to clarify this problem using a meta-analysis. Methods: A total of 9 records were identified by searching the PubMed and Embase databases. Fixed- and random-effects models were performed to estimate the pooled odds ratios. Results: No significant association was found between the GSTM1 and GSTT1 homozygous deletion polymorphisms and risk of brain tumours, including glioma and meningioma. Similar negative results were also observed in both population-based and hospital-based studies. Conclusion: These findings indicate that the GSTM1 and GSTT1 polymorphisms may not be related to the development of brain tumours.

Pediatric High Grade Gliomas in the Context of Cancer Predisposition Syndromes

  • Michaeli, Orli;Tabori, Uri
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.319-332
    • /
    • 2018
  • Germline mutations in cancer causing genes result in high risk of developing cancer throughout life. These cancer predisposition syndromes (CPS) are especially prevalent in childhood brain tumors and impact both the patient's and other family members' survival. Knowledge of specific CPS may alter the management of the cancer, offer novel targeted therapies which may improve survival for these patients, and enables early detection of other malignancies. This review focuses on the role of CPS in pediatric high grade gliomas (PHGG), the deadliest group of childhood brain tumors. Genetic aspects and clinical features are depicted, allowing clinicians to identify and diagnose these syndromes. Challenges in the management of PHGG in the context of each CPS and the promise of innovative options of treatment and surveillance guidelines are discussed with the hope of improving outcome for individuals with these devastating syndromes.

The Electromagnetic Fields, Exposure Limits and Regulations (긴급제언: 전자파 환경, 인체보호기준과 규제 -세계보건기구(WHO) 휴대폰, 무선주파수를 발암가능물질(2B)로 분류-)

  • Moon, Hank
    • Journal of the Korean Professional Engineers Association
    • /
    • v.44 no.5
    • /
    • pp.31-35
    • /
    • 2011
  • The WHO/International Agency for Research on Cancer(IARC) has classified radiofrequency electromagnetic fields as possibly carcinogenic to humans(Group 2B), based on an increased risk for glioma, a malignant type of brain cancer, associated with wireless phone use on 31, May 2011. It takes 10 years after announcing the electric magnetic as possibly carcinogenic to humans(Group 2B) and 14 years after starting research project. It is too late as mentioned, too weak in terms of the same class to 'pickles & coffee' and too little in terms of using words 'more studies required'. The guidelines on human exposure to electromagnetic fields have been developed to provide guidance to identify the safety of exposure to electromagnetic fields. On the recent recommendations of safety guidelines, there has been discussion on possible chronic effects of electromagnetic fields with much lower or no threshold. This paper riviews the global trends of safety guidelines and has suggested the new guidelines for protecting the human health, wildlife and insects.

  • PDF

Arsenite induces premature senescence via p53/p21 pathway as a result of DNA damage in human malignant glioblastoma cells

  • Ninomiya, Yasuharu;Cui, Xing;Yasuda, Takeshi;Wang, Bing;Yu, Dong;Sekine-Suzuki, Emiko;Nenoi, Mitsuru
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.575-580
    • /
    • 2014
  • In this study, we investigate whether arsenite-induced DNA damage leads to p53-dependent premature senescence using human glioblastoma cells with p53-wild type (U87MG-neo) and p53 deficient (U87MG-E6). A dose dependent relationship between arsenite and reduced cell growth is demonstrated, as well as induced ${\gamma}H2AX$ foci formation in both U87MG-neo and U87MG-E6 cells at low concentrations of arsenite. Senescence was induced by arsenite with senescence-associated ${\beta}$-galactosidase staining. Dimethyl- and trimethyl-lysine 9 of histone H3 (H3DMK9 and H3TMK9) foci formation was accompanied by p21 accumulation only in U87MG-neo but not in U87MG-E6 cells. This suggests that arsenite induces premature senescence as a result of DNA damage with heterochromatin forming through a p53/p21 dependent pathway. p21 and p53 siRNA consistently decreased H3TMK9 foci formation in U87M G-neo but not in U87MG-E6 cells after arsenite treatment. Taken together, arsenite reduces cell growth independently of p53 and induces premature senescence via p53/p21-dependent pathway following DNA damage.

The CCND1 G870A Gene Polymorphism and Brain Tumor Risk: a Meta-analysis

  • Qin, Ling-Yan;Zhao, Li-Gang;Chen, Xu;Li, Ping;Yang, Zheng;Mo, Wu-Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3607-3612
    • /
    • 2014
  • Background: In recent years, numerous studies have been performed to investigate the CCND1 G870A gene polymorphism impact on brain tumors susceptibility. Unfortunately, the results of previous studies were inconsistent. Therefore, we performed a meta-analysis to derive a more precise estimation of any association. Materials and Methods: We conducted a search in PubMed, Embase and CNKI covering all published papers up to November, 2013. Odds ratios (ORs) and their 95% confidence intervals (95%CIs) were applied to assess associations. Results: A total of 6 publications including 9 case-control studies met the inclusion criteria. The pooled ORs for the total included studies showed significant association among comparison A vs G (OR= 1.246, 95%CI= 1.092-1.423, p= 0.001), homozygote comparison AA vs GG (OR= 1.566, 95%CI= 1.194-2.054, p= 0.001), heterozygote comparison AG vs GG (OR= 1.290, 95%CI= 0.934-1.782, p= 0.122), dominant model AA/GA vs GG (OR= 1.381, 95%CI= 1.048-1.821, p= 0.022) and recessive model AA vs GA/GG (OR= 1.323, 95%CI= 1.057-1.657, p= 0.015) especially in glioma. Conclusions: CCND1 G870A polymorphism may increase brain tumor risk, especially for gliomas. However, more primary large scale and well-designed studies are still required to evaluate the interaction of CCND1 G870A polymorphism with brain tumor risk.

Association of XRCC3 Thr241Met Polymorphisms and Gliomas Risk: Evidence from a Meta-analysis

  • Liang, Hong-Jie;Yan, Yu-Lan;Liu, Zhi-Ming;Chen, Xu;Peng, Qi-Liu;Wang, Jian;Mo, Cui-Ju;Sui, Jing-Zhe;Wu, Jun-Rong;Zhai, Li-Min;Yang, Shi;Li, Tai-Jie;Li, Ruo-Lin;Li, Shan;Qin, Xue
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4243-4247
    • /
    • 2013
  • The relationship between the X-ray repair cross-complementing group 3 (XRCC3) Thr241Met polymorphism and gliomas remains inclusive or controversial. For better understanding of the effect of XRCC3 Thr241Met polymorphism on glioma risk, a meta-analysis was performed. All eligible studies were identified through a search of PubMed, Elsevier Science Direct, Excerpta Medica Database (Embase) and Chinese Biomedical Literature Database (CBM) before May 2013. The association between the XRCC3 Thr241Met polymorphism and gliomas risk was conducted by odds ratios (ORs) and 95% confidence intervals (95% CIs). A total of nine case-control studies including 3,533 cases and 4,696 controls were eventually collected. Overall, we found that XRCC3 Thr241Met polymorphism was significantly associated with the risk of gliomas (T vs. C: OR=1.10, 95%CI=1.01-1.20, P=0.034; TT vs. CC: OR=1.30, 95%CI=1.03-1.65, P=0.027; TT vs. TC/CC: OR=1.29, 95%CI=1.01-1.64, P=0.039). In the subgroup analysis based on ethnicity, the significant association was found in Asian under four models (T vs. C: OR=1.17, 95%CI=1.07-1.28, P=0.00; TT vs. CC: OR=1.79, 95%CI=1.36-2.36, P=0.00; TT vs. TC/CC: OR=1.75, 95%CI=1.32-2.32, P=0.00; TT/TC vs. CC: OR=1.11,95% CI=1.02-1.20). This meta-analysis suggested that the XRCC3 Thr241Met polymorphism is a risk factor for gliomas, especially for Asians. Considering the limited sample size and ethnicities included in the meta-analysis, further large scale and well-designed studies are needed to confirm our results.

CCDC26 Gene Polymorphism and Glioblastoma Risk in the Han Chinese Population

  • Wei, Xiao-Bing;Jin, Tian-Bo;Li, Gang;Geng, Ting-Ting;Zhang, Jia-Yi;Chen, Cui-Ping;Gao, Guo-Dong;Chen, Chao;Gong, Yong-Kuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3629-3633
    • /
    • 2014
  • Background: Glioblastoma (GBM) is an immunosuppressive tumor whose median survival time is only 12-15 months, and patients with GBM have a uniformly poor prognosis. It is known that heredity contributes to formation of glioma, but there are few genetic studies concerning GBM. Materials and Methods: We genotyped six tagging SNPs (tSNP) in Han Chinese GBM and control patients. We used Microsoft Excel and SPSS 16.0 statistical package for statistical analysis and SNP Stats to test for associations between certain tSNPs and risk of GBM in five different models. ORs and 95%CIs were calculated for unconditional logistic-regression analysis with adjustment for age and gender. The SHEsis software platform was applied for analysis of linkage disequilibrium, haplotype construction, and genetic associations at polymorphism loci. Results: We found rs891835 in CCDC26 to be associated with GBM susceptibility at a level of p=0.009. The following genotypes of rs891835 were found to be associated with GBM risk in four different models of gene action: i) genotype GT (OR=2.26; 95%CI, 1.29-3.97; p=0.019) or GG (OR=1.33; 95%CI, 0.23-7.81; p=0.019) in the codominant model; ii) genotypes GT and GG (OR=2.18; 95%CI, 1.26-3.78; p=0.0061) in the dominant model; iii) GT (OR=2.24; 95%CI, 1.28-3.92; p=0.0053) in the overdominant model; iv) the allele G of rs891835 (OR=1.85; 95%CI, 1.14-3.00; p=0.015) in the additive model. In addition, "CG" and "CGGAG" were found by haplotype analysis to be associated with increased GBM risk. In contrast, genotype GG of CCDC26 rs6470745 was associated with decreased GBM risk (OR=0.34; 95%CI, 0.12-1.01; p=0.029) in the recessive model. Conclusions: Our results, combined with those from previous studies, suggest a potential genetic contribution of CCDC26 to GBM progression among Han Chinese.

THE EFFECT OF GENETIC VARIATION IN THE DNA BASE REPAIR GENES ON THE RISK OF HEAD AND NECK CANCER (DNA 염기손상 치유유전자의 변이와 두경부암 발생 위험성)

  • Oh, Jung-Hwan;Yoon, Byung-Wook;Choi, Byung-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.509-517
    • /
    • 2008
  • DNA damage accumulates in cells as a result of exposure to exogenous agents such as benzopyrene, cigarette smoke, ultraviolet light, X-ray, and endogenous chemicals including reactive oxygen species produced from normal metabolic byproducts. DNA damage can also occur during aberrant DNA processing reactions such as DNA replication, recombination, and repair. The major of DNA damage affects the primary structure of the double helix; that is, the bases are chemically modified. These modification can disrupt the molecules'regular helical structure by introducing non-native chemical bonds or bulky adducts that do not fit in the standard double helix. DNA repair genes and proteins scan the global genome to detect and remove DNA damage and damage to single nucleotides. Direct reversal of DNA damage, base excision repair, double strand break. DNA repair are known relevant DNA repair mechanisms. Four different mechanisms are distinguished within excision repair: direct reversal, base excision repair, nucleotide excision repair, and mismatch repair. Genetic variation in DNA repair genes can modulate DNA repair capacity and alter cancer risk. The instability of a cell to properly regulate its proliferation in the presence of DNA damage increase risk of gene mutation and carcinogenesis. This article aimed to review mechanism of excision repair and to understand the relationship between genetic variation of excision repair genes and head and neck cancer.

Investigation of ICAM-1 and β3 Integrin Gene Variations in Patients with Brain Tumors

  • Yilmaz, Umit;Zeybek, Umit;Kahraman, Ozlem Timirci;Kafadar, Ali Metin;Toptas, Bahar;Yamak, Nesibe;Celik, Faruk;Yaylim, Ilhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5929-5934
    • /
    • 2013
  • Background: Primary brain tumors constitute a small percent of all malignant cancers, but their etiology remains poorly understood. ${\beta}3$ integrin (ITGB3) has been recognized to play influential roles in angiogenesis, tumor growth and metastasis. Intercellular adhesion molecule-1 (ICAM-1) is a surface glycoprotein important for tumor invasion and angiogenesis. The aim of this study was to investigate whether specific genetic polymorphisms of ICAM-1 and ITGB3 could be associated with brain cancer development and progression in a Turkish population. Our study is the first to our knowledge to investigate the relationship between brain tumor risk and ICAM-1 and ${\beta}3$ integrin gene polymorphisms. Materials and Methods: The study covered 92 patients with primary brain tumors and 92 age-matched healthy control subjects. Evaluation of ${\beta}3$ integrin (Leu33Pro (rs5918)) and ICAM-1 (R241G (rs1799969) and K469E (rs5498)) gene polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: According to results of our research, the A allele of the ICAM-1 R241G gene polymorphism appeared to be a risk factor for primary brain tumors (p<0.001). Similarly, the frequency of the A mutant allele of ICAM-1 R241G was statistically significant in patients with brain tumors classified as glioma (p<0.001). When allele and genotype distributions of ICAM-1 K469E, ICAM-1 R241G and ${\beta}3$ integrin Leu33Pro gene polymorphisms were evaluated with age, sex, and smoking, there were no statistically significant differences. Haplotype analysis revealed that the frequencies of GAC (rs1799969-rs5498-rs5918) and GAT (rs1799969-rs5498-rs5918) haplotypes were significantly lower in patients as compared with controls (p=0.001; p=0.036 respectively). Conclusions: This study provides the first evidence that ICAM-1 R241G SNP significantly contributes to the risk of primary brain tumors in a Turkish population. In addition, our results suggest that ICAM-1 R241G in combination ICAM-1 K469E may have protective effects against the development of brain cancer.