• 제목/요약/키워드: glioma invasiveness

검색결과 8건 처리시간 0.023초

Hyperthermia Promotes Apoptosis and Suppresses Invasion in C6 Rat Glioma Cells

  • Wang, Dong-Chun;Zhang, Yan;Chen, Hai-Yan;Li, Xiao-Li;Qin, Li-Juan;Li, Ya-Juan;Zhang, Hong-Yi;Wang, Shuo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3239-3245
    • /
    • 2012
  • Gliomas are a group of heterogeneous primary central nervous system tumors. Hyperthermia has proven to be a potential therapeutic tool for cancers in the clinic. However, the molecular mechanisms of hyperthermia remain unclear. The objective of this study was to investigate the effects of hyperthermia on the invasiveness in C6 glioma cells and related molecular pathways. Here our data show hyperthermia stimulated the release of tumor necrosis factor-alpha (TNF-${\alpha}$) and decreased C6 glioma cell migration and invasive capability at 30, 60, 120 and 180 min; with increased spontaneous apoptosis in C6 glioma cells at 120 min. We also found mitogen-activated protein kinase (P38 MAPK) protein expression to be increased and nuclear factor-kappa B (NF-${\kappa}B$) protein expression decreased. Based on the results, we conclude that hyperthermia alone reduced invasion of C6 glioma cells through stimulating TNF-${\alpha}$ signaling to activate apoptosis, enhancing P38 MAPK expression and inhibiting the NF-${\kappa}B$ pathway, a first report in C6 rat glioma cells.

The Effect of Hyaluronic Acid on the Invasiveness of Malignant Glioma Cells : Comparison of Invasion Potential at Hyaluronic Acid Hydrogel and Matrigel

  • Jin, Shu-Guang;Jeong, Young-Il;Jung, Shin;Ryu, Hyang-Hwa;Jin, Yong-Hao;Kim, In-Young
    • Journal of Korean Neurosurgical Society
    • /
    • 제46권5호
    • /
    • pp.472-478
    • /
    • 2009
  • Objective : Hyaluronidase (HAse), a degrading enzyme of hyaluronic acid (HA), is highly expressed in patients with malignant glioma. The purpose of this study was to verify whether HAse is related to the invasion of glioma cells. We also investigated if glioma cells with higher mobility in 2-dimensioal (2-D) method have also higher mobility at 3-dimensional (3-D) environment. Methods : Malignant glioma cell lines (U87MG, U251MG, U343MG-A, and U373MG) were used, and their HAse expressions were evaluated by HA zymography. The migration ability was evaluated by simple scratch technique. The invasiveness of each cell lines was evaluated by Matrigel invasion assay and HA hydrogel invasion assay. In HA hydrogel invasion assay, colonies larger than $150\;{\mu}m$ were regarded as positive ones and counted. Statistical analysis of migration ability and invasion properties of each cell lines was performed using t-test. Results : In scratch test to examine migration ability of each cell lines, U87MG cells were most motile than others, and U343MG-A least motile. The HAse was expressed in U251MG and U343MG-A cell lines. However, U87MG and U373MG cell lines did not express HAse activity. In Matrigel invasion assay, the cell lines expressing HAse (U251MG and U343MG-A) were more invasive in the presence of HA than HAse deficient cell lines (U87MG and U373MG). In HA hydrogel invasion assay, the HAse-expressing cell lines formed colonies more invasively than HAse-deficient ones. Conclusion : Malignant Glioma cells expressing HAse were more invasive than HAse-deficient ones in 3-dimensional environment. Therefore, it might be suggested that invasion of malignant gliomas is suppressed by inhibition of HAse expression or HA secretion. Additionally, the ability of 2-D migration and 3-D invasion might not be always coincident to each other in malignant glioma cells.

교모세포종 세포주 U-87에서 세포내 PKC 농도와 종양침습성과의 상관 관계 (The Relationship between Intracellular Protein Kinase C Concentration and Invasiveness in U-87 Malignant Glioma Cells)

  • 지철;조경근;이경진;박성찬;조정기;강준기;최창락
    • Journal of Korean Neurosurgical Society
    • /
    • 제30권3호
    • /
    • pp.263-271
    • /
    • 2001
  • 교모세포종은 비교적 흔한 원발성 뇌종양이며 생물학적 특성상 빠른 성장률을 보이는 것 외에 침습성이 강하여 종양과 인접한 부분을 파괴 시킬 뿐 아니라 직접접촉하지 않는 부분의 파괴도 일어나게 되어 그 결과 치료 예후가 매우 불량한 것으로 되어 있다. 이러한 불량한 예후를 개선 시키기 위해서는 이들 종양의 침습에 대한 기전의 정확한 이해가 필요하며 이를 이용한 새로운 치료방법이 요구된다할 것이다. Protein kinase C(PKC)는 세포내 신호전달체제 과정에서 매우 중요한 역할을 하는 효소로 세포막 수용체 신호를 핵으로 전달하는 역할을 하며 세포내 여러 생물학적 작용이 알려져 있다. 본 실험은 종양침습과 연관하여 세포내 PKC가 어떠한 작용을 하는지에 대해서 악성교종 세포를 대상으로 하여 알아보고자 하였다. 따라서 PKC가 종양침습에 중요한 역할을 할 것이라는 가설을 세웠고 이 가설을 증명하기 위해 세포내 PKC농도를 길항제 및 촉진제를 이용하며 높고 낮게 조절함으로써 그에 따른 침습성의 변화를 살펴보았다. 방법으로는 교모세포종 세포주인 U-87 세포를 약제로 처리한 후 인위적으로 조절된 세포내의 PKC에 대해 효소의 활성도를 측정하였고 침습성은 matrigel artificial basement membrane assay 및 tumor spheroid fetal rat brain aggregate(FRBA) confrontation assay를 이용하여 측정하였다. 결과로 PKC의 길항제인 tamoxifen과 hypericin으로 처치한 세포는 PKC의 활성과 침습도가 모두 감소하였으며 이는 약제농도에 비례하여 나타났다. 반면 PKC 자극제인 TPA로 처치된 세포는 증가된 PKC 활성도나 침습도을 보이지 않았다. 이러한 결과를 종합해 보았을 때 PKC는 종양세포의 침습성에 중요한 역할을 함을 알 수 있었으며 PKC의 길항제는 종양 치료에 유용한 화학 요법 제가 될 수 있을 것으로 사료된다.

  • PDF

Specificity Protein 1 Expression Contributes to Bcl-w-Induced Aggressiveness in Glioblastoma Multiforme

  • Lee, Woo Sang;Kwon, Junhye;Yun, Dong Ho;Lee, Young Nam;Woo, Eun Young;Park, Myung-Jin;Lee, Jae-Seon;Han, Young-Hoon;Bae, In Hwa
    • Molecules and Cells
    • /
    • 제37권1호
    • /
    • pp.17-23
    • /
    • 2014
  • We already had reported that Bcl-w promotes invasion or migration in gastric cancer cells and glioblastoma multiforme (GBM) by activating matrix metalloproteinase-2 (MMP-2) via specificity protein 1 (Sp1) or ${\beta}$-cateinin, respectively. High expression of Bcl-w also has been reported in GBM which is the most common malignant brain tumor and exhibits aggressive and invasive behavior. These reports propose that Bcl-w-induced signaling is strongly associated with aggressive characteristic of GBM. We demonstrated that Sp1 protein or mRNA expression is induced by Bcl-w using Western blotting or RT-PCR, respectively, and markedly elevated in high-grade glioma specimens compared with low-grade glioma tissues using tissue array. However, relationship between Bcl-w-related signaling and aggressive characteristic of GBM is poorly characterized. This study suggested that Bcl-w-induced Sp1 activation promoted expression of glioma stem-like cell markers, such as Musashi, Nanog, Oct4 and sox-2, as well as neurosphere formation and invasiveness, using western blotting, neurosphere formation assay, or invasion assay, culminating in their aggressive behavior. Therefore, Bcl-w-induced Sp1 activation is proposed as a putative marker for aggressiveness of GBM.

Bacitracin Inhibits the Migration of U87-MG Glioma Cells via Interferences of the Integrin Outside-in Signaling Pathway

  • Li, Songyuan;Li, Chunhao;Ryu, Hyang-Hwa;Lim, Sa-Hoe;Jang, Woo-Youl;Jung, Shin
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권2호
    • /
    • pp.106-116
    • /
    • 2016
  • Objective : Protein disulfide isomerase (PDI) acts as a chaperone on the cell surface, and it has been reported that PDI is associated with the tumor cell migration and invasion. The aims of this study are to investigate the anti-migration effect of bacitracin, which is an inhibitor of PDI, and the associated factor in this process. Methods : U87-MG glioma cells were treated with bacitracin in 1.25, 2.5, 3.75, and 5.0 mM concentrations. Western blot with caspase-3 was applied to evaluate the cytotoxicity of bacitracin. Adhesion, morphology, migration assays, and organotypic brain-slice culture were performed to evaluate the effect of bacitracin to the tumor cell. Western blot, PCR, and gelatin zymography were performed to investigate the associated factors. Thirty glioma tissues were collected following immunohistochemistry and Western blot. Results : Bacitracin showed a cytotoxicity in 3rd (p<0.05) and 4th (p<0.001) days, in 5.0 Mm concentration. The cell adhesion significantly decreased and the cells became a round shape after treated with bacitracin. The migration ability, the expression of phosphorylated focal adhesion kinase (p-FAK) and matrix metalloproteinase-2 (MMP-2) decreased in a bacitracin dose- and time-dependent manner. The U87-MG cells exhibited low-invasiveness in the 2.5 mM, compared with the untreated in organotypic brain-slice culture. PDI was expressed in the tumor margin, and significantly increased with histological glioma grades (p<0.001). Conclusion : Bacitracin, as a functional inhibitor of PDI, decreased the phosphorylated FAK and the secreted MMP-2, which are the downstream of integrin and play a major role in cell migration and invasion, might become one of the feasible therapeutic strategies for glioblastoma.

The Dose Dependent Effects of Ruxolitinib on the Invasion and Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT Signaling Pathway

  • Delen, Emre;Doganlar, Oguzhan
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권4호
    • /
    • pp.444-454
    • /
    • 2020
  • Objective : Glioblastoma multiforme (GBM) is the most aggressive for of brain tumor and treatment often fails due to the invasion of tumor cells into neighboring healthy brain tissues. Activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is essential for normal cellular function including angiogenesis, and has been proposed to have a pivotal role in glioma invasion. This study aimed to determine the dose-dependent effects of ruxolitinib, an inhibitor of JAK, on the interferon (IFN)-I/IFN-α/IFN-β receptor/STAT and IFN-γ/IFN-γ receptor/STAT1 axes of the IFN-receptor-dependent JAK/STAT signaling pathway in glioblastoma invasion and tumorigenesis in U87 glioblastoma tumor spheroids. Methods : We administered three different doses of ruxolitinib (50, 100, and 200 nM) to human U87 glioblastoma spheroids and analyzed the gene expression profiles of IFNs receptors from the JAK/STAT pathway. To evaluate activation of this pathway, we quantified the phosphorylation of JAK and STAT proteins using Western blotting. Results : Quantitative real-time polymerase chain reaction analysis demonstrated that ruxolitinib led to upregulated of the IFN-α and IFN-γ while no change on the hypoxia-inducible factor-1α and vascular endothelial growth factor expression levels. Additionally, we showed that ruxolitinib inhibited phosphorylation of JAK/STAT proteins. The inhibition of IFNs dependent JAK/STAT signaling by ruxolitinib leads to decreases of the U87 cells invasiveness and tumorigenesis. We demonstrate that ruxolitinib may inhibit glioma invasion and tumorigenesis through inhibition of the IFN-induced JAK/STAT signaling pathway. Conclusion : Collectively, our results revealed that ruxolitinib may have therapeutic potential in glioblastomas, possibly by JAK/STAT signaling triggered by IFN-α and IFN-γ.

교모세포종 세포주 U87에서 Photofrin을 사용한 광역학 치료가 종양 침습성에 미치는 영향 (Photodynamic Therapy with Photofrin Reduces Invasiveness of U87 Malignant Human Glioma Cells)

  • 우희경;조경근;나형균;이경진;박성찬;조정기;박해관;강준기;최창락
    • Journal of Korean Neurosurgical Society
    • /
    • 제30권sup2호
    • /
    • pp.189-196
    • /
    • 2001
  • 목 적 : 교모세포종은 흔한 원발성 뇌종양이며 생물학적 특성상 빠른 성장률을 보이는 것 외에 침습성이 강하여 종양과 인접한 부분을 파괴 시킬 뿐 아니라 직접접촉하지 않는 부분의 파괴도 일어나게 되어 치료 예후가 매우 불량한 것으로 되어 있다. 광역학치료는 광감각제를 이용하며 광감각제는 적절한 파장의 광원에 노출되면 세포 내에서 산소독성 물질을 생성하여 세포괴사를 유도하는 것이 주 살해작용의 기전이다. 본 실험에서는 사람의 신경교종 세포주인 U87 세포를 이용하여 실험관 내에서 광감각제 photofrin을 이용한 광역학치료가 종양의 침습성에 미치는 영향을 알아보고 동시에 이를 뇌종양치료의 새로운 방법으로 사용될 수 있는지의 여부를 알아보고자 하였다. 재료 및 방법 : 교모세포종 세포주인 U87 세포를 여러 농도의 photofrin으로 처리한 후 632nm $100mJ/cm^2$의 고정된 광선조건에서 본 실험을 시행 하였으며 Microculture tetrazolium(MTT) assay를 이용하여 세포 살해능력을 측정하고 침습성은 matrigel artificial basement membrane assay 및 tumor spheroid fetal rat brain aggregate(FRBA) confrontation assay를 이용하여 측정하였다. 결 과 : MTT assay를 이용하여 측정한 광역학 치료의 세포살해능력은 $100mJ/cm^2$의 광선 세기에서 광감각제인 photofrin의 농도에 비례하여 세포 살해 능력을 보였다. Matrigel artificial basement membrane assay 를 이용한 종양 침습성 검사에서 광역학치료가 종양침습의 억제효과를 나타냄을 알 수 있었으며 특히 세포 살해능력을 별로 보이지 않았던 photofrin 농도 2.5ug/ml에서 뚜렷한 침습억제효과를 나타내고 있었다(p<0.05). tumor spheroid fetal rat brain aggregate(FRBA) confrontation assay에서는 brain aggregate의 파괴와 종양의 침습을 관찰할 수 있었는데 파괴의 모양은 생체내에서 보이는 것과 비슷 하였다. 또한 그 정도와 범위는 처리된 Photofrin의 농도에 비례하여 종양침습이 억제됨을 알 수 있었다. 결 론 : 이러한 결과를 종합해 보았을 때 PDT는 종양세포의 침습성에 중요한 역할을 함을 알 수 있었으며 PDT 는 세포 살해능력뿐 아니라 침습성에도 영향을 미침으로써 종양 치료에 유용한 방법으로 사용될 수 있을 것으로 사료된다.

  • PDF

플루오레신나트륨의 농도 범위 분석 (Analysis for Concentration Range of Fluorescein Sodium)

  • 이다애;김용재;윤기철;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권2호
    • /
    • pp.67-74
    • /
    • 2020
  • Brain tumors or gliomas are fatal cancer species with high recurrence rates due to their strong invasiveness. Therefore, the goal of surgery is complete tumor resection. However, the surgery is difficult to distinguish the border because tumors and blood vessels have the same color tone and shape. The fluorescein sodium is used as a fluorescence contrast agent for boundary separation. When the external light source is irradiated, yellow fluorescence is expressed in the tumor, which helps distinguish between blood vessels and tumor boundaries. But, the fluorescence expression of fluorescence sodium depends on the concentration of fluorescein sodium and such analytical data is insufficient. The unclear fluorescence can obscure the boundaries between blood vessels and tumors. In addition, reduce the efficiency of fluorescence sodium use. This paper proposes a protocol of concentration range for fluorescence expression conditions. Fluorescent expression was observed using a near-infrared (NIR) color camera with corresponding dilution using normal saline in 1 ml microtube. The flunoresence emission density range is 1.00 mM to 0.15 mM. The fluorescence emission begin to 1.00 mM and the 0.15 mM discolor. The discolor is difficult to fluorescence emission condition obserbation. Thus, the maximum density range of the bright fluoresecein is 0.15 mM to 0.30 mM. When the concentration range of fluorescein sodium is analyzed based on the gradient of fluorescence expression and the power measurement, the brightest fluorescence is expected to facilitate the complete resection of the tumor. For the concentration range protocol, setting concentration ranges and analyzing fluorescence expression image according to saturation and brightness to find optimal fluorescence concentration are important. Concentration range protocols for fluorescence expression conditions can be used to find optimal concentrations of substances whose expression pattern varies with concentration ranges. This study is expected to be helpful in the boundary classification and resection of brain tumors and glioma.