Browse > Article
http://dx.doi.org/10.7314/APJCP.2012.13.7.3239

Hyperthermia Promotes Apoptosis and Suppresses Invasion in C6 Rat Glioma Cells  

Wang, Dong-Chun (Tangshan Worker Hospital)
Zhang, Yan (Department of Neurosurgery, Second Affiliated Hospital of Nanchang University)
Chen, Hai-Yan (Department of Anesthesiology, School of Medicine, University of Utah)
Li, Xiao-Li (Tangshan Worker Hospital)
Qin, Li-Juan (Department of Physiology, College of Basic Medical Sciences, Hebei United University)
Li, Ya-Juan (Tangshan Worker Hospital)
Zhang, Hong-Yi (Tangshan Worker Hospital)
Wang, Shuo (Department of Neurosurgery, Beijing Tiantan Hospital Attached to the Capital Medical University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.13, no.7, 2012 , pp. 3239-3245 More about this Journal
Abstract
Gliomas are a group of heterogeneous primary central nervous system tumors. Hyperthermia has proven to be a potential therapeutic tool for cancers in the clinic. However, the molecular mechanisms of hyperthermia remain unclear. The objective of this study was to investigate the effects of hyperthermia on the invasiveness in C6 glioma cells and related molecular pathways. Here our data show hyperthermia stimulated the release of tumor necrosis factor-alpha (TNF-${\alpha}$) and decreased C6 glioma cell migration and invasive capability at 30, 60, 120 and 180 min; with increased spontaneous apoptosis in C6 glioma cells at 120 min. We also found mitogen-activated protein kinase (P38 MAPK) protein expression to be increased and nuclear factor-kappa B (NF-${\kappa}B$) protein expression decreased. Based on the results, we conclude that hyperthermia alone reduced invasion of C6 glioma cells through stimulating TNF-${\alpha}$ signaling to activate apoptosis, enhancing P38 MAPK expression and inhibiting the NF-${\kappa}B$ pathway, a first report in C6 rat glioma cells.
Keywords
Hyperthermia; glioma invasiveness; TNF-${\alpha}$; P38 MAPK; NF-${\kappa}B$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shen H-M, Pervaiz S (2006). TNF receptor superfamily-induced cell death: redoxdependent execution. FASEB J, 20, 1589-98.   DOI
2 Silva AC, Oliveira TR, Mamani JB, and et al. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomedicine, 6, 591-603.
3 Skibba JL, Powers RH, Stadnicka A, Kalbfleisch JH (1990). Lipid peroxidation caused by hyperthermic perfusion of rat liver. Biochem Pharmacol, 40, 1411-4.   DOI
4 Sminia P, van der Zee J, Wondergem J, Haveman J (1994). Effect of hyperthermia on the central nervous system: a review. Int J Hyperthermia, 10, 1-30.   DOI
5 Sneed PK, Stauffer PR, Gutin PH, et al (1991). Interstitial irradiation and hyperthermia for the treatment of recurrent malignant brain tumors. Neurosurgery, 28, 206-15.   DOI
6 Sneed PK, Gutin PH, Stauffer PR, et al (1992). Thermoradiotherapy of recurrent malignant brain tumors. Int J Radiat Oncol Biol Phys, 23, 853-61.   DOI
7 Sneed PK, Stauffer PR, McDermott MW, et al (1998). Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/- hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys, 40, 287-95.   DOI
8 Stea B, Cetas TC, Cassady JR, et al (1990). Interstitial thermoradiotherapy of brain tumors: preliminary results of a phase I clinical trial. Int J Radiat Oncol Biol Phys, 19, 1463-71.   DOI
9 Stea B, Rossman K, Kittelson J, et al (1994). Interstitial irradiation versus interstitial thermoradiotherapy for supratentorial malignant gliomas: a comparative survival analysis. Int J Radiat Oncol Biol Phys, 30, 591-600.   DOI
10 Stupp R, Hegi ME, Gilbert MR, Chakravarti A (2007). Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol, 25, 4127-36.   DOI
11 Stupp R, Mason WP, van den Bent MJ, et al (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med, 352, 987-96.   DOI   ScienceOn
12 Tanaka R, Kim CH, Yamada N, Saito Y (1987). Radiofrequency hyperthermia for malignant brain tumors: preliminary results of clinical trials. Neurosurgery, 21, 478-83.   DOI
13 Thomas LR, Henson A, Reed JC, Salsbury FR, Thorburn A (2004). Direct binding of Fas-associated death domain (FADD) to the tumor necrosis factor-related apoptosis-inducing ligand receptor DR5 is regulated by the death effector domain of FADD. J Biol Chem, 279, 32780-5.   DOI
14 Venkataraman S, Wagner BA, Jiang X, et al (2004). Overexpression of manganese superoxide dismutase promotes the survival of prostate cancer cells exposed to hyperthermia. Free Radic Res, 38, 1119-32.   DOI
15 Tulapurkar ME, Asiegbu BE, Singh IS, Hasday JD (2009). Hyperthermia in the febrile range induces HSP72 expression proportional to exposure temperature but not to HSF-1 DNA-binding activity in human lung epithelial A549 cells. Cell Stress Chaperones, 14, 499-508.   DOI
16 Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996). Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science, 274, 787-9.   DOI   ScienceOn
17 van der Zee J, Gonzalez Gonzalez D, van Rhoon GC, et al (2000). Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet, 355, 1119-25.   DOI
18 Wang CY, Mayo MW, Baldwin AS (1996). Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science, 274, 784-787.   DOI
19 Vernon CC, Hand JW, Field SB, et al (1996). Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys, 35, 731-44.   DOI
20 Walczak H, Miller RE, Ariail K, et al (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med, 5, 157-163.   DOI   ScienceOn
21 Wong HR, Ryan M, Gebb S, Wispe JR (1997). Selective and transient in vitro effects of heat shock on alveolar type II cell gene expression. Am J Physiol, 272, L132-8.
22 Yamaguchi S, Tanabe K, Takai S, et al (2009). Involvement of Rho-kinase in tumor necrosis factor-ainduced interleukin-6 release from C6 glioma cells. Nerochem Int, 55, 438-45.   DOI
23 Zhang X, Chen T, Zhang J, et al (2012). Notch1 promotes glioma cell migration and invasion by stimulating $\beta$-catenin and NF-${\kappa}B$ signaling via AKT activation. Cancer Sci, 103, 181-90.   DOI
24 Yoo J, Lee Y (2007). Effect of hyperthermia on TRAIL-induced apoptotic death in human colon cancer cells: development of a novel strategy for regional therapy. J Cell Biochem, 101, 619-30.   DOI
25 Yoo L, Lee Y (2008). Effect of hyperthermia and chemotherapeutic agents on TRAIL-induced cell death in human colon cancer cells. J Cell Biochem, 103, 98-109.   DOI
26 Zhang B-C, Li Q, Ye J (2004). Role of p38MAKP in mediating TNF-induced apoptosis of rat glioma cell line C6. Journal of Medical Colleges of PLA, 18, 308-11.
27 de Vera ME, Wong JM, Zhou JY, et al (1996). Cytokine-induced nitric oxide synthase gene transcription is blocked by the heat shock response in human liver cells. Surgery, 120, 144-9.   DOI
28 Ashkenazi A, Pai RC, Fong S, et al (1999). Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest, 104, 155-62.   DOI   ScienceOn
29 Baud V, Karin M (2001). Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol, 11, 372-7.   DOI   ScienceOn
30 Beg AA, Baltimore D (1996). An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science, 274, 782-4.   DOI   ScienceOn
31 Dorsett Y, Tuschl T (2004). siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov, 3, 318-29.   DOI   ScienceOn
32 Feinstein DL, Galea E, Aquino DA, et al (1996). Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. J Biol Chem, 271, 17724-32.   DOI
33 Gong XM, Choi J, Franzin CM, el al (2004). Conformation of membrane-associated proapoptotic tBid. J Biol Chem, 279, 28954-60.   DOI
34 Fiorentini G, Giovanis P, Rossi S, et al (2006). A phase II clinical study on relapsed malignant gliomas treated with electro-hyperthermia. In Vivo, 20, 721-4.
35 Flanagan SW, Moseley PL, Buettner GR (1998). Increased flux of free radicals in cells subjected to hyperthermia: detection by electron paramagnetic resonance spin trapping. FEBS Lett, 431, 285-6.   DOI
36 Frank J, Kelleher DK, Pompella A, et al (1998). Enhancement of oxidative cell injury and antitumor effects of localized $44^{\circ}C$ hyperthermia upon combination with respiratory hyperoxia and xanthine oxidase. Cancer Res, 58, 2693-8.
37 Hagemann T, Wilson J, Kulbe H, et al (2005). Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol, 175, 1197-205.   DOI
38 Hall DM, Buettner GR, Matthes RD, Gisolfi CV (1994). Hyperthermia stimulates nitric oxide formation: electron paramagnetic resonance detection of NO-heme in blood. J Appl Physiol, 77, 548-53.
39 Hayden MS, Ghosh S: Signaling to NF-${\kappa}B$ (2004). Genes Dev, 18, 2195-224.   DOI   ScienceOn
40 Haveman J, Sminia P, Wondergem J, van der Zee J, Hulshof MC (2005). Effects of hyperthermia on the central nervous system: what was learnt from animal studies? Int J Hyperthermia, 21, 473-87.   DOI
41 Kato S, Sadarangani A, Lange S et al (2007). The oestrogen metabolite 2-methoxyoestradiol alone or in combination with tumour necrosis factor-related apoptosis-inducing ligand mediates apoptosis in cancerous but not healthy cells of the human endometrium. Endocr Relat Cancer, 14, 351-68.   DOI
42 Kischkel FC, Lawrence DA, Chuntharapai A, et al (2000). Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity, 12, 611-20.   DOI   ScienceOn
43 Kokura S, Yoshida N, Ueda M, et al (2003). Hyperthermia enhances tumor necrosis factor alpha-induced apoptosis of a human gastric cancer cell line. Cancer Lett, 201, 89-96.   DOI
44 Li Q, Verma IM, (2002). NF_B regulation in the immune system. Nat Rev Immunol, 2, 725-34.   DOI   ScienceOn
45 Kulbe H, Hagemann T, Szlosarek PW, Balkwill FR, Wilson JL (2005). The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells. Cancer Res, 65, 10355-62.   DOI
46 Lee YJ, Hou Z, Curetty L, Cho JM, Corry PM (1993). Synergistic effects of cytokine and hyperthermia oncytotoxicity in HT-29 cells are not mediated by alteration of induced protein levels. J Cell Physiol, 155, 27-35.   DOI
47 Li P, Nijhawan D, Budihardjo I, et al (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91, 479-89.   DOI   ScienceOn
48 Liu ZG, Hsu H, Goeddel DV, Karin M (1996). Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell, 87, 565-76.   DOI
49 McCoy MK, Tansey MG (2008). TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation, 5, 45.   DOI
50 Montesano R, Soulie P, Eble JA, Carrozzino F (2005). Tumour necrosis factor alpha confers an invasive, transformed phenotype on mammary epithelial cells. J Cell Sci, 118, 3487-500.   DOI
51 Moran CJ, Marchosky JA, Wippold FJ, DeFord JA, Fearnot NE (1995). Conductive interstitial hyperthermia in the treatment of intracranial metastatic disease. J Neurooncol, 26, 53-63.   DOI
52 Oh KJ, Barbuto S, Meyer N, et al (2005). Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding. A site-directed spin labeling study. J Biol Chem, 280, 753-67.   DOI
53 Ryu J, Ku BM, Lee YK, et al (2011). Resveratrol reduces TNF-$\alpha$-induced U373MG human glioma cell invasion through regulating NF-${\kappa}B$ activation and uPA/uPAR expression. Anticancer Res, 31, 4223-30.
54 Overgaard J, Gonzalez Gonzalez D, Hulshof MC, et al (1995). Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet, 345, 540-3.   DOI   ScienceOn
55 Park SM, Schickel R, Peter ME (2005). Nonapoptotic functions of FADD-binding death receptors and their signaling molecules. Curr Opin Cell Biol, 17, 610-6.   DOI