• Title/Summary/Keyword: glassy carbon electrodes

Search Result 56, Processing Time 0.024 seconds

Effect of Electrode Materials and Applied Potential in Electrocatalytic Reduction of Carbon Dioxide by Carbon Monoxide Dehydrogenase (일산화탄소탈수소화효소를 이용한 이산화탄소의 전기화학적 환원에 미치는 전극재료와 전위의 영향)

  • Shin, Jun Won;Kim, You-Sung;Song, Ji-Eun;Lee, Sang-Hee;Lee, Sang-Phil;Lee, Ho-Jun;Lim, Mi-Ran;Shin, Woon-Sup
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.165-169
    • /
    • 2008
  • The effect of reduction of carbon dioxide by CODH(Carbon Monoxide Dehydrogenase) was compared on glassy carbon and gold working electrodes. In case of gold electrode, the choice of the optimum applied potential is very important since $H_2$ evolution can be mixed with $CO_2$ reduction. On the other hand, efficient $CO_2$ reduction was observed up to -650 mV vs. NHE on glassy carbon in neutral solution due to the larger overpotential for $H_2$ evolution on glassy carbon surface than that on gold surface. The optimum potential for $CO_2$ reduction was found to be $-570{\sim}600\;mV$ vs. NHE. The current efficiency of $CO_2$ to CO decreased dramatically at more negative potential according to the activity of enzyme decrease and the hydrogen evolution.

Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol at Nitrogen Doped Porous Carbon Nanopolyhedrons-multiwall Carbon Nanotubes Hybrid Materials Modified Glassy Carbon Electrode

  • Liu, Wei;Wu, Liang;Zhang, Xiaohua;Chen, Jinhua
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.204-210
    • /
    • 2014
  • The nitrogen doped porous carbon nanopolyhedrons (N-PCNPs)-multi-walled carbon nanotubes (MWCNTs) hybrid materials were prepared for the first time. Combining the excellent catalytic activities, good electrical conductivities and high surface areas of N-PCNPs and MWCNTs, the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RE) with good analytical performance was achieved at the N-PCNPs-MWCNTs modified electrode. The linear response ranges for HQ, CC and RE are 0.2-455 ${\mu}M$, 0.7-440 ${\mu}M$ and 3.0-365 ${\mu}M$, respectively, and the detection limits (S/N = 3) are $0.03{\mu}M$, $0.11{\mu}M$ and $0.38{\mu}M$, respectively. These results are much better than that obtained on some graphene or CNTs-based materials modified electrodes. Furthermore, the developed sensor was successfully applied to simultaneously detect HQ, CC and RE in the local river water samples.

The Electrocatalytic Reduction of Oxygen by Bis-Cobalt Phenylporphyrins in Various pH Solutions (여러 가지 pH 수용액에서 Bis-Cobalt Phenylporphyrin 유도체들에 의한 산소의 전극 촉매적 환원)

  • Yong-Kook Choi;Ki-Hyung Chjo;Jong-Ki Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.735-743
    • /
    • 1993
  • The electrocatalytic reduction of oxygen is investigated by cyclic voltammetry and chronoamperometry at glassy carbon electrode and carbon microelectrode coated with a variety of cobalt phenylprophyrins in various pH solutions. Oxygen reduction catalyzed by the monomeric porphyrin Co(Ⅱ)-TPP mainly occurs through the 2e$^-$ reduction pathway resulting in the formation of hydrogen peroxide whereas electrocatalytic process carried out 4e$^-$ reduction pathway of oxygen to H$_2$O at the electrodes coated with cofacial bis-cobalt phenylporphyrins in acidic solution. The electrocatalytic reduction of oxygen is irreversible and diffusion controlled. The reduction potentials of oxygen in various pH solutions have a straight line from pH 4 to pH 13, but level off in strong acidic solution. The reduction potentials of oxygen shift to positive potential more 400 mV at the electrode coated with monomer Co-TPP compound than bare glassy carbon electrode while 750 mV at the electrode coated with dimer Co-TPP compound.

  • PDF

The Electrocatalytic Reduction of Dioxygen by Bis-Cobalt Phenylporphyrins in Alkaline Solution (알칼리 수용액에서 Bis-Cobalt Phenylporphyrin 유도체들에 의한 산소의 전극 촉매적 환원)

  • Yong-Kook ChoI;Hyun-Ju Moon;Seung-Won Jeon;Ki-Hyung Chjo
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.4
    • /
    • pp.462-469
    • /
    • 1993
  • The electrocatalytic reduction of dioxygen is investigated by cyclic voltammetry and chronoamperometry at glassy carbon electrode and carbon microelectrode coated with a variety of cobalt phenylporphyrins. The n value obtained at carbon microelectrode is slightly different from that determined at glassy carbon electrode. Dioxygen reduction catalyzed by the monormeric porphyrin Co(II)-TPP mainly occurs through the $2e^-$ reduction pathway resulting in the formation of hydrogen peroxide, electrocatalytic process carries out $4e^-$ reduction pathway of dioxygen to $H_2O$ at the electrodes coated with bis-cobalt phenylporphyrins. The electrocatalytic reduction of dioxygen is irreversible and diffusion controlled.

  • PDF

Effect of Cl2 on Electrodeposition Behavior in Electrowinning Process

  • Kim, Si Hyung;Kim, Taek-Jin;Kim, Gha-Young;Shim, Jun-Bo;Paek, Seungwoo;Lee, Sung-Jai
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.73-73
    • /
    • 2017
  • Pyroprocessing at KAERI (Korea Atomic Energy Research Institute) consists of pretreatment, electroreduction, electrorefining and electrowinning. SFR (Sodium Fast Reactor) fuel is prepared from the electrowinning process which is composed of LCC (Liquid Cadmium Process) and Cd distillation et al. LCC is an electrochemical process to obtain actinides from spent fuel. In order to recover actinides inert anodes such as carbon material are used, where chlorine gas ($Cl_2$) evolves on the surface of the carbon material. And, stainless steel (SUS) crucible should be installed in large-scale electrowinning system. Therefore, the effect of chlorine on the SUS material needs to be studied. LiCl-KCl-$UCl_3$-$NdCl_3$-$CeCl_3$-$LaCl_3$-$YCl_3$ salt was contained in 2 kinds of electrolytic crucible having an inner diameter of 5cm, made of an insulated alumina and an SUS, respectively. And, three kinds of electrodes such as cathode, anode, reference were used for the electrochemical experiments. Both solid tungsten (W) and LCC were used as cathodes. Cd of 45 g as the cathode material was contained in alumina crucibles for the deposition experiments, where the crucible has an inner diameter of 3 cm. Glassy carbon rod with the diameter of 0.3 cm was employed as an anode, where shroud was not used for the anode. A pyrex tube containing LiCl-KCl-1mol% AgCl and silver (Ag) wire having a diameter of 0.1cm was used as a reference electrode. Electrodeposition experiments were conducted at $500^{\circ}C$ at the current densities of $50{\sim}100mA/cm^2$. In conclusion, Fe ions were produced in the salt during the electrodeposition by the reaction of chlorine evolved from the anode and Fe of the SUS crucible and thereby LCC system using SUS crucible showed very low current efficiencies compared with the system using the insulated alumina crucible. Anode shroud needs to be installed around the glassy carbon not to influence surrounding SUS material.

  • PDF

Electrochemical and Spectroelectrochemical Behaviors of Vitamin K1/Lipid Modified Electrodes and the Formation of Radical Anion in Aqueous Media

  • Yang, Jee-Eun;Yoon, Jang-Hee;Won, Mi-Sook;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3133-3138
    • /
    • 2010
  • The electrochemical properties of the liposoluble vitamin $K_1$ adsorbed on bare and lipid coated glassy carbon electrodes (GCEs) were studied in unbuffered and well buffered aqueous media. The reduction products of vitamin $K_1$ were characterized by employing cyclic voltammetry and the in situ UV-visible spectroelectrochemical technique. The radical species of vitamin $K_1$ cannot be observed at the bare GCEs in well buffered media. The formation of the anion radical of vitamin $K_1$ was observed in unbuffered solutions above pH 5.9 or at the lipid coated GCE in a well-buffered solution. UV-visible absorption bands of neutral vitamin $K_1$ were observed at 260 nm and 330 nm, and a band corresponding to the anion radical species was observed at 450 nm. The derivative cyclic voltabsorptometric (DCVA) curves obtained for electrochemical reduction of vitamin $K_1$ confirmed the presence of both neutral and anion radical species. The anion radical of vitamin $K_1$ formed at the hydrophobic conditions with phosphatidylcholine (PC) lipid coated electrode was stable enough to be observed in the spectroelectrochemical experiments.

Electrosynthesis and Electrochemical Properties of Metal Oxide Nano Wire/ P-type Conductive Polymer Composite Film

  • Siadat, S.O. Ranaei
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.81-87
    • /
    • 2015
  • This study introduces a facile strategy to prepare metal oxide/conducting polymer nanocomposites that may have promising applications in energy storage devices. Ploy aniline/nano wire manganese dioxide (PANI/NwMnO2) was synthesized by cyclic voltammetry on glassy carbon electrode. Morphology and structure of the composite, pure PANI, MnO2 nanowires were fully characterized using XRD and SEM analysis. Electrochemical studies shows excellent synergistic effect between PANI and MnO2 nanowires which results in its capacitance increase and cycle stability against PANI electrode. Specific capacitances of PANI/NwMnO2 and PANI were 456 and 190 F/g respectively. The electrochemical performance of electrodes studied using cyclic voltammetry, Galvanostatic charge/discharge and impedance spectroscopy.

Conductivity and Electrochemical characterization of Lithium ion secondary battery electrolytes (리튬이온 2차 전지용 전해액의 이온전도도와 전기화학적 특성)

  • 임동규;이제혁;변문기;조봉희;김영호;우병원;나두찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.295-298
    • /
    • 1998
  • We have investigated ionic conductivity and electrochemical stability of the electrolytes containing organic solvent. Ion conductivities were measured between 10 and 80$^{\circ}C$, and electrochemical stabilities were determined by cyclic voltammetry on glassy carbon, platinum and aluminum electrodes. Ionic conductivity of electrolyte(EC:DEC=1:1) with IM LiPF$\_$6/ shows better than that of the other electrolytes having Li salts. The IM LiBF$_4$-PC electrolyte exhibits good electrochemical stability. IM LiPF$\_$6/ (EC:DEC=1:1) and IM LiPF$\_$6/ (EC:DMC=1:1) electrolytes are used for the high capacity of battery system.

  • PDF

Electrocatalysis of Oxygen Reduction by Au Nanoparticles Electrodeposited on Polyoxometalate-Modified Electrode Surfaces

  • Choi, Kyung-Min;Choi, Su-Hee;Kim, Jong-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • The effect of polyoxometalate monolayers on the electrodeposition of Au nanoparticles (AuNPs) on glassy carbon (GC) surfaces was examined by electrochemical and scanning electron microscope techniques. The presence of $SiMo_{12}O^{4-}_{40}$-layers resulted in average particle sizes of ca. 60 nm, which is larger than AuNPs deposited on bare GC surfaces. AuNPs electrodeposited on $SiMo_{12}O^{4-}_{40}$-modified GC surfaces for 20 s exhibited the best electrocatalytic activity for oxygen reduction. This system exhibited similar or slightly better efficiency for oxygen reduction than a bare Au electrode. Rotating disk electrode experiments were also performed and revealed that the catalytic reduction of oxygen on AuNPs deposited on $SiMo_{12}O^{4-}_{40}$-modified GC electrodes is a two-electron process.

Electrochemical Study of [Ni63-Se)2μ4-Se)3(dppf)3] Cluster and Its Catalytic Activity towards the Electrochemical Reduction of Carbon Dioxide

  • Park, Deog-Su;Jabbar, Md. Abdul;Park, Hyun;Lee, Hak-Myoung;Shin, Sung-Chul;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1996-2002
    • /
    • 2007
  • The redox behavior of a [Ni6(μ3-Se)2(μ4-Se)3(Fe(η 5-C5H4P-Ph2)2)3] (= [Ni-Se-dppf], dppf = 1,1-bis(diphenylphosphino) ferrocene) cluster was studied using platinum (Pt) and glassy carbon electrodes (GCE) in nonaqueous media. The cluster showed electrochemical activity at the potential range between +1.6 and ?1.6 V. In the negative region (0 to ?1.6 V), the cluster exhibited two-step reductions. The first step was one-electron reversible, while the second step was a five-electron quasi-reversible process. On the other hand, in the positive region (0 to +1.6 V), the first step involved one-electron quasi-reversible process. The applicability of the cluster was found towards the electrocatalytic reduction of CO2 and was evaluated by experiments using rotating ring disc electrode (RRDE). RRDE experiments demonstrated that two electrons were involved in the electrocatalytic reduction of CO2 to CO at the Se-Ni-dppf-modified electrode.