• Title/Summary/Keyword: glassy carbon electrodes

Search Result 56, Processing Time 0.026 seconds

Determination of Lead(II) at Nafion-DTPA-Glycerol-Modified Glassy Carbon Electrodes

  • Park, Eun-Heui;Park, Chan-Ju;Chung, Keun-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.204-207
    • /
    • 2003
  • Determination of Lead(II) using nafion-DTPA (diethylene triamine pentaacetic acid)-glycerol-modified glassy carbon electrodes is described. Lead(II) is accumulated at the electrode by complexing with the DTPA, reduced, and detected by differential pulse voltammetry. In this study, we demonstrate that at a preconcentration time of 5min the nafion-DTPA-glycerol-modified glassy carbon electrode has a linear calibration curve at range 1.0${\times}$10$\^$-9/M∼1.0${\times}$10$\^$-7/M in pH 4.0 buffer solution. The detection limit(3$\sigma$) is as low as 5.0${\times}$10$\^$-6/M. This method is applied to the determination of lead(II) in certified reference material and the result agrees satisfactorily with the certified value.

  • PDF

Study on the surface reactions of carbon and graphite electrodes in sulfuric acid solution (황산 용액중의 분극시 나타나는 탄소전극들의 계면반응)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.648-662
    • /
    • 1996
  • Electrode surface reaction on glassy carbon and synthesized graphite (PVDF mixed graphite) in sulfuric acid solution is investigated by impedance spectroscopy at cyclic polarization. The redox peak, which may be due to the change of chemical adsorped functional group on electrode surface or oxidation and reduction of oxygen, is represented on glassy carbon and graphite electrode in potentio-dynamic current curve. The oxidation and reduction of these surface functional group on glassy carbon and PVDF mixed graphite have a major affect on the impedance spectrum and Faraday impedance parameter at cyclic polarization.

  • PDF

Electrocatalytic Reduction of Dioxygen at Glassy Carbon Electrodes with Irreversible Self-assembly of N-hexadecyl-N'-methyl Viologen

  • Lee, Chi-Woo;Jang, Jai-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.563-567
    • /
    • 1994
  • The electroreduction of dioxygen at glassy carbon electrodes with irreversible self-assembly of N-hexadecyl-N'-methyl viologen $(C_{16}VC_1)$ proceeds at potentials more positive than those where the reduction occurs at bare electrodes. The electrocatalyzed reduction takes place at potentials well ahead of those where the catalyst is reduced in the absence of dioxygen and the limiting currents observed at rotating disk electrodes did not deviate from the thoretical Levich line up to 6400 rpm, indicating that the electrocatalysis is extremely rapid. The rate constant for the heterogeneous reaction between $C_{16}V^+C_1$ immobilized on the electrode surface and $O_2$ in solution was estimated to be ca. $10^8\;M^{-1}s^{-1}$. The half-wave potential of dioxygen reduction was independent of solution pH.

Simple and Ultrasensitive Chemically Amplified Electrochemical Detection of Ferrocenemethanol on 4-Nitrophenyl Grafted Glassy Carbon Electrode

  • Koh, Ahyeon;Lee, Junghyun;Song, Jieun;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.286-292
    • /
    • 2016
  • Chemically amplified electrochemical detection, redox-active probe being amplified its electrochemical anodic current by a sacrificial electron donor presenting in solution, holds great potential for simple and quantitative bioanalytical analysis. Herein, we report the chemically amplified electrochemical analysis that drastically enhanced a detection of ferrocenemethanol (analyte) by ferrocyanide (chemical amplifier) on 4-nitrophenyl grafted glassy carbon electrodes at $60^{\circ}C$. The glassy carbon electrode grafted with a 4-nitrophenyl group using an electrochemical reduction suppressed the oxidation of ferrocyanide and thus enabled detection of ferrocenemethanol with excellent selectivity. The ferrocenemethanol was detected down to an nM range using a linear sweep voltammetry under kinetically optimized conditions. The detection limit was improved by decreasing the concentration of the ferrocyanide and increasing temperature.

Determination of Mercury(II) Using Nafion-EDTA-Modified Glassy Carbon Electrodes (Nafion-EDTA가 수식된 유리탄소전극을 이용한 수은(II)의 측정)

  • 정근호;박찬주;박율희;이지영
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.110-114
    • /
    • 2000
  • Determination of mercury(II) using Nafion-EDTA-modified glassy carbon electrodes is proposed. it is based on the chemical reactivity of an immobilized modifier, Nafion-EDTA. Differential pulse voltammetry is employed, and the oxidation of complexes, at +0.43V vs. Ag/AgCl, is observed. For a 5-min preconcentration period, a linear calibration curve is obtained for mercury(II) concentrations ranging from 1.0$\times$ 10$^{-8}$ to 1.0$\times$10$^{-6}$ M. Further, when an approximate amount of copper(II) is added to the test solution, We demonstrate that at a preconcentration time of 5 min the Nafion-EDTA-modified glassy carbon electrode has a dynamic range of 2 orders of magnitude(from 10$^{-10}$ to 10$^{-8}$ M) and the detection limit is as low as 0.5$\times$ 10$^{-10}$ M(0.01 ppb). This method is applied to the determination of mercury(II) in sea water(4.0$\times$10$^{-10}$ M, 0.08ppb). The result agrees satisfactorily with the value(below 0.1 ppb) measured by using ICP/MS.

  • PDF

Electrochemical Reduction of Thionyl Chloride by Tetradentate Schiff Base Transition Metal(II) Complexes : Catalytic Effects (네자리 Schiff Base 전이금속(II) 착물들에 의한 SOCl$_2$의 전기화학적 환원 : 촉매 효과)

  • Woo-Seong Kim;Yong-Kook Choi;Chan-Young Kim;Ki-Hyung Chjo;Jong-Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.702-710
    • /
    • 1993
  • Electrochemical reduction of thionyl chloride has been carried out at glassy carbon and molybdenum electrodes, the surface of which is modified by binuclear tetradentate schiff base Co(II), Ni(II),Cu(II) and Fe(II) complexes. The catalyst molecules of transition metal(II) complexes were adsorbed on the electrode surface and reduced thionyl chloride resulting in a generation of oxidized catalyst molecules. There was an optimum concentration for each catalyst compound. The catalytic effects of SOCl$_2$ reduction were larger on glassy carbon electrodes compared to molybdenum electrodes and enhancements in reduction current of up to 120${\%}$ at the glassy carbon electrodes. The reduction currents of thionyl chloride were increased and the reduction potentials were shifted to the negative potential when scan rates became faster. The reduction of thionyl chloride was proceed to diffusion controlled reaction.

  • PDF

Study on the Surface Reactions of Graphite Electrodes by Anodic Polarization (양극분극에 의한 흑연전극의 계면반응에 대한 연구)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • Electrode surface reaction on three carbon materials(glassy carbon, synthesized graphite, graphite foil) in 0.5 M K2SO4 electrolyte is investigated by impedance spectroscopy during anodic polarization. The double layer capacitance of the graphite foil electrode is relatively higher than that of other two materials. The change of capacitance parameter C due to chemical adsorption on glassy carbon and synthesized graphite(PVDF graphite) is observed in 0.5 M K2SO4 solution at anodic polarization. In general, the faradic impedance on glassy carbon depends on anodic polarization, and the change of impedance parameter on graphite foil at anodic polarization is not remarkable, because this reaction is controlled by field transport.

  • PDF

Electrocatalytic Reduction of Dioxygen at Schiff base Co(II) Complexes supported Glassy Carbon Electrode in various pH Solution

  • Park, Kyoung-Hee;Rim, Chae-Pyeong;Chjo, Ki-Hyung;Jeon, Seungwon;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.617-622
    • /
    • 1995
  • Electrocatalytic reduction of dioxygen has been investigated by cyclic voltammetry at glassy carbon electrode modified with new Co(II)-Schiff base complexes in aqueous solutions of various pH. The reduction potentials of dioxygen at chemically adsorbed electrodes show the dependence of pH between pH 4 and 14. The catalytic effect is large and the reaction occurs via two or four electron transfer in various pH solution.

  • PDF

Electropolymerization Mechanism for Poly(o-phenylenediamine) (PPD) and Its Electrocatalytic Behavior for $O_2$ Reduction

  • Jang, Dong Hun;Yu, Yong Seop;O, Seung Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.392-397
    • /
    • 1995
  • o-Phenylenediamine (o-PD) was electropolymerized on glassy carbon electrodes under a potential cycling condition. The resulting polymer films mediated electrons for the reduction of molecular oxygen at pH=1.0. It was found from the RDE, RRDE, and cyclic voltammetry experiments that the modified electrodes reduce oxygen to hydrogen peroxide at about 300 mV lower potential than the bare glassy carbon electrode. The polymer film consisted of more than two components. Among those, only one component was active in oxygen reduction, which was formed mainly in the earlier stage of the electropolymerization. 2,3-Diaminophenazine, a cyclic dimer of o-PD, was also active in the oxygen reduction reaction, from which it was suggested that the active polymeric component has a structural unit similar to the cyclic dimer. Finally, the electropolymerization mechanism for the formation of the active and inactive components has been proposed.