• Title/Summary/Keyword: glass transition region

Search Result 80, Processing Time 0.018 seconds

Neutralization and Ionization of movable ion at insulator-metal interface (절연체-금속계면에서 가동이온의 중성화와 이온화)

  • 이성길;국상훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.33-35
    • /
    • 1988
  • From the study of mechanism of electrical conduction of film which is made from Polyethylene Terephthalate at very high temperature which is larger than low electric field and glass transition point, we find that there is a extraordinary non ohmic region (I∝V$^n$, 0

  • PDF

Effect on the Residual Stress of Cure Profiles, Fillers and Mold Constraints in an Epoxy System

  • Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.1-5
    • /
    • 2009
  • A dilatometer was used to investigate the effect of cure conditions, mold types and the presence of filler in an epoxy system. These studies showed shrinkage in the cured epoxy when heating it through the glass transition temperature region. The magnitude of the shrinkage, related to stress build up in the epoxy during curing, was influenced by the processing conditions, filler presence and the nature of the mold used to contain the resin. Cure and cyclic cure at a lower temperature, prior to a post cure, decreased the magnitude of observed shrinkage. Cure shrinkage decreased with the number of cyclic cures. Post cured samples outside the mold led to less shrinkage compared with samples in the mold. Sample cured in a silicon mold represented less shrinkage than sample cured in an aluminum mold. Sample containing kaolin filler showed less shrinkage than unfilled sample.

The Effects on Alkoxy Group and Catalyst in Hydrolysis of Silicon Alkoxide System (Silicon Alkoxide계 가수분해에서 Alkoxy Group과 촉매의 첨가에 대한 영향)

  • ;;Sumio Sakka
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.6
    • /
    • pp.561-571
    • /
    • 1987
  • In case of glass ceramics and powder preparation from the metalakoxide solutions, metalakoxide solutions with a various species of alkoxy groups have unique characteristics. Therefore, in this study, the mixing ability of homogeneous sol, gel morphology and physical properties of gels were investigated by the changes in terms of the different four alkoxy groups, CH3-, C2H5-, i-C3H7-n-C4H9-, along with the catalyst for the purpose of the observation about the homogenous transition range from sol to gel. As a result, when the fixed condition was mol ratio of H2O/Si(OR)4=2.0 and variables were batch composition and addition amount of catalyst, the characteristics of Tetra-normal-Butoxysilane and Tetra-iso-propoxysilane systems had very narrow sol-gel conversion region than Tetramethoxysilane and Tetraethoxysilane system. And silicon-alkoxide, systems having narrow sol-gel conversion region were enlarged by addition of catalyst. In viewpoint of the weight loss of gel produced by hydrolysis of silicon alkoxide systems with different four alkoxy groups, the amounts of weight loss of gel containing large molecular alkoxy groups were much more than those of small molecular alkoxy group.

  • PDF

Properties, Structure and Crystallization of Poly Lactic Acid/Zinc Oxide Pillared Organic Saponite Nanocomposites (폴리락틱산/산화아연 기둥구조의 유기사포나이트 나노복합체의 특성, 구조 및 결정화)

  • Zhen, Weijun;Sun, Jinlu
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.299-306
    • /
    • 2014
  • ZnO pillared saponite was synthesized via a microwave hydrolysis method. To enhance interfacial compatibility between zinc oxide (ZnO) pillared saponite and poly lactic acid (PLA), ZnO pillared organic saponite was prepared by intercalation modification of cetyltrimethylammonium bromide. Moreover, PLA/ZnO pillared organic saponite nanocomposites were prepared by melting processing. The microstructure analysis of PLA/ZnO pillared organic saponite nanocomposites showed that ZnO pillared organic saponite was exfoliated and homogeneouslydispersed in PLA matrix. The property results showed that ZnO pillared organic saponite improved the mechanical properties and thermal stabilities of PLA/ZnO pillared organic saponite nanocomposites. Differential scanning calorimetry (DSC) demonstrated that ZnO pillared organic saponite restrained the appearance of cold crystallization, lowered the glass transition temperature and melting temperature of PLA, and improved the crystallinity of PLA. The results demonstrated that ZnO pillared organic saponite had a good interfacial compatibility and heterogeneous nucleation effect in PLA matrix, and also played an active role in accelerating the crystallization process of PLA.

Characteristics and Structural Evolution of Low-Silica Calcium Aluminate Glasses (소량의 $SiO_2$가 첨가된 Calcium Aluminate 유리의 특성 및 구조)

  • Shim, Sung-Han;Heo, Jong;Kim, You-Song
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.695-702
    • /
    • 1994
  • Current study was undertaken to explain the structural evolution and corresponding changes in the properties of calcium aluminate glasses with the variation of SiO2 doping concentration. Calcium aluminate glasses in the compositional ranges of (100-x)(0.6CaO+0.4Al2O3)+xSiO2(where x=0~60) were fabricated. DTA analysis confirmed an anomalous behavior in glass transition temperature (Tg) with the maximum of 887$^{\circ}C$ and minimum of 859$^{\circ}C$ when x=5 and 50, respectively. densities and refractive indices monotonically decreased with increasing SiO2 content and IR transmitting cutoff shifted to shorter wavelength side when the amount of added SiO2 exceeded 5 mole%. IR fundamental vibration absorption peaks showed the change that NBOs were inclined to SiO4 tetrahedron in the low-silica region and NBO per SiO4 tetrahedra changed from 2 to 0 with increasing silica content. Based on the analysis of IR fundamental vibration absorption peaks, the model of the structural change can be proposed in three step: 1) SiO4 scavenged the NBOs located at AlO4-tetrahedra, which resulted in the increased of Tg values, 2) NBOs located in the main network again with a decrease in Tg, and 3) dominated by the decrease in the relative amount of NBOs in the glass system, where Tg re-increased.

  • PDF

Thermal Stability, Mechanical Properties and Magnetic Properties of Fe-based Amorphous Ribbons with the Addition of Mo and Nb

  • Han, Bo-Kyeong;Jo, Hye-In;Lee, Jin Kyu;Kim, Ki Buem;Yim, Haein
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.395-399
    • /
    • 2013
  • The metallic glass ribbons of $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Mo_4$ (x = 0, 0.3, 0.6, 0.9 at.%) and $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$ (x = 0, 0.3, 0.6, 0.9 at.%) were obtained by melt spinning with 25-30 ${\mu}m$ thickness. The thermal stability, mechanical properties and magnetic properties of Fe-Co-B-Si based systems were investigated. The values of thermal stability were measured using differential scanning calorimetry (DSC), including glass transition temperature ($T_g$), crystallization temperature ($T_x$) and supercooled liquid region (${\Delta}T_x=T_x-T_g$). These amorphous ribbons were identified as fully amorphous, using X-ray diffraction (XRD). The mechanical properties of Febased samples were measured by nano-indentation. Magnetic properties of the amorphous ribbons were measured by a vibrating sample magnetometer (VSM). The amorphous ribbons of $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Mo_4$ (x = 0, 0.3, 0.6, 0.9 at.%) and $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$ (x = 0, 0.3, 0.6, 0.9 at.%) exhibited soft magnetic properties with low coercive force ($H_c$) and high saturation magnetization (Ms).

Characterization of Thickness and Thermoelastic Properties of Interphase in Polymer Nanocomposites using Multiscale Analysis (멀티스케일 해석을 통한 고분자 나노복합재의 계면 상 두께와 열탄성 물성 도출)

  • Choi, Joonmyung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.577-582
    • /
    • 2016
  • In this study, a multiscale method for solving a thermoelasticity problem for interphase in the polymeric nanocomposites is developed. Molecular dynamics simulation and finite element analysis were numerically combined to describe the geometrical boundaries and the local mechanical response of the interfacial region where the polymer networks were highly interacted with the nanoparticle surface. Also, the micrmechanical thermoelasticity equations were applied to the obtained equivalent continuum unit to compute the growth of interphase thickness according to the size of nanoparticles, as well as the thermal phase transition behavior at a wide range of temperatures. Accordingly, the equivalent continuum model obtained from the multiscale analysis provides a meaningful description of the thermoelastic behavior of interphase as well as its nanoparticle size effect on thermoelasticity at both below and above the glass transition temperature.

Novel Electroluminescent Polymer Derived from Pyrene-Functionalized Polyaniline

  • Amarnath, Chellachamy Anbalagan;Kim, Hyoung-Kun;Yi, Dong-Kee;Lee, Sang-Hyup;Do, Young-Rag;Paik, Un-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1495-1499
    • /
    • 2011
  • A solution processable polymer was synthesized, by incorporating pyrene groups into the backbone of the polyaniline chain, and used as an emissive layer in an organic light emitting diode. The polyaniline base was reacted with acid chloride of pyrene butyric acid to form pyrene-functionalized polyaniline chains. The source of pyrene moiety was acid chloride of pyrene butyric acid. The formation of polymer from acid chloride of pyrene butyric acid and polyaniline was confirmed by the FTIR and $^1H$-NMR spectroscopy. Differential scanning calorimetry revealed high glass transition temperature of 210 $^{\circ}C$. Due to the presence of pyrene moieties in the backbone, the polyaniline synthesized in the present study is solution processable with light emitting property. The photoluminescence spectrum of the polymer revealed that emission lies in the blue region, with a peak at 475 nm. The light emitting device of this polymer exhibits the turn-on voltage of 15 V.

Investigation of Weldline Strength with Various Heating Conditions (국부 금형가열에 조건에 따른 사출성형품 웰드라인의 강도 고찰)

  • Park, Keun;Sohn, Dong-Hwi;Seo, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.105-112
    • /
    • 2010
  • Weldlines are generated during the injection molding process when two or more melt flows are brought into contact. The weldlines are unavoidable in the cases of presence of holes or inserts, multi-gated delivery systems, significant thickness change, etc. At the welded contact region, a 'V'-shaped notch is formed on the surface of the molded part. This 'V'-notch deteriorates not only surface appearance but also mechanical strength of the molded part. To eliminate or reduce weldlines so as to improve the weldline strength, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. The present study implements high-frequency induction heating in order to rapidly raise mold surface temperature without a significant increase in cycle time. This induction heating enables to local mold heating so as to eliminate or reduce weldlines in an injection-molded plastic part. The effect of induction heating conditions on the weldline strength and surface appearance of an injection-molded part is investigated.

Properties and Crystallization Characteristics of Ge-Se-Te Glasses (Ge-Se-Te계 칼코지나이드 유리의 결정 생성 현상 및 특성)

  • Lee, Yong-Woo;Heo, Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.239-247
    • /
    • 1995
  • Chalcogenide glasses with compositions of Ge10Se90-xTex(X=0~50 at.%) were prepared in order to investigate the effects of Te substitution on the transmission characteristics of Ge-Se glasses in the 8~12 ${\mu}{\textrm}{m}$ wavelength region. Absorption coefficients were observed to decrease with Te addition, indicating the improved transmission capabilities of Ge-Se-Te glasses as compared to binary Ge-Se glasses. XRD analysis of crystallized glasses suggested the formation of weaker Se-Te and/or Te-Te bonds with addition of Te substituting for Se in stronger Se-Se bonds. Incorporation of Te in excess of 20at% resulted in the formation of hexagonal Te phases when crystallized. It is speculated that the presence of Te-Te bonds with highly metallic bond character resulted in the enhanced crystallization tendencies of glasses. Fromation of Te-rich chains through gradual replacement of Se-Se with Se-Te and/or Te-Te bonds was further supported by decreases in glass transition and crystallization temperatures.

  • PDF