• Title/Summary/Keyword: glass sealing

Search Result 133, Processing Time 0.024 seconds

Wetting Phenomena between Sealing Glass and Free Cutting Steel (접합유리와 쾌삭강간의 Wetting 현상)

  • Kim, Heung;Kim, Chong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.1
    • /
    • pp.24-34
    • /
    • 1982
  • The effect of the several variables on wetting of AISIB1113 steel by molten glass was studied by Sessible-drop method. Experimental variables were temperature, firing atmospheres, Fe2O3 addition to the sealing glass and steel surface conditions. The degree of wetting in terms of contact angles between molten glass and metal tested at different test conditions was analyzed by using Young's equation. The results showed that contact angles in H2 atmosphere in the glass metal systems were high but in N2 atmosphere, were small for studied glass metal systems. Especially, when the glass drop was in contact with oxidized steel in N2 atmosphere, The best adherence with contact angle of approximately 9°was obtained. In the case of Fe2O3 addition in glass contact angles subtantially increased due to the increase of surface tension of glass. Wetting phenomena were also discussed under the basis of these experimental results.

  • PDF

Analysis of the Edge Sealing Strength for Vacuum Glass Panel Using Design of Experiment (실험계획법을 이용한 진공유리 패널 모서리 용융 접합 강도실험 분석)

  • Kim, Seung-Jong;Jeon, Euy-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1819-1824
    • /
    • 2014
  • The vacuum-glazing panel is a panel that keeps two glasses completely sealed in a vacuum condition. It is the high function insulation material of having the wall level minimizing the heat loss by the conduction and convection heat transmission coefficient. The edge sealing is a very important process of vacuum glass on the strength, thickness and air tightness. In this study, by using the hydrogen mixture gas torch, two sheets of glass was sealing in the furnace. The thickness and strength of the glass according to the process parameters is measurement and analysis, and predicting the edge sealing strength of glass by using taguchi method of experiment. We verified the validity of the experiment by checking the error rate through additional experiment.

Vacuum In-Line Sealing by a Halogen Lamp Heating of Frit-Glass Seals for Flat Panel Display

  • Kwon, Sang-Jik;Hong, Kun-Cho;Lee, Jong-Duk;Whang, Ki-Woong;Park, Sun-Woo;Kwon, Yong-Bum
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.147-148
    • /
    • 2000
  • Sealing of two glass plates composing of FED panel was done in a vacuum chamber. Several factors related with a heating process of a frit glass were investigated, including comparisons with a conventional method.

  • PDF

V2O5-P2O5-ZnO-Sb2O3 Glass Frit Materials with BaO and Al2O3 for Large-sized Dye-sensitized Solar Cell Sealing

  • Lee, Han Sol;Cho, Jae Kwon;Hwang, Jae Kwon;Chung, Woon Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.114-118
    • /
    • 2015
  • $V_2O_5-P_2O_5-ZnO-Sb_2O_3$ glasses modified with BaO and $Al_2O_3$ are synthesized as a sealing material for large-scale dye-sensitized solar cells (DSSCs). A compositional study is performed in order to determine the glass that can be sintered below $500^{\circ}C$ with a high chemical stability against the electrolyte. The flow size of the glasses after the heat treatment and the glass stability are increased with the addition of $Al_2O_3$ and BaO, while the glass transition temperature is decreased. After the reaction with the electrolyte at $60^{\circ}C$ for 72 h, the addition of 5 mol% of BaO and 2 mol% of $Al_2O_3$ considerably enhances the chemical stability of the glass. X-ray diffraction (XRD) and scanning electron microscope (SEM) are used to examine the reaction between the electrolyte and glasses. The structural contribution of the additives is also investigated and discussed.

The Oxidation of Kovar(Fe-29Ni-17Co) in Humidified nitrogen (가습된 질소 분위기에서의 Kovar(Fe-29Ni-17Co)산화)

  • 김병수;김민호;김상우;최덕균;손용배
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.11
    • /
    • pp.1228-1234
    • /
    • 1999
  • In order to form a uniform oxidation layer and spinel crystalline phase that was supposed to help strong bonding in Kovar(Fe-29Ni-17Co)to-glass sealing the humidified nitrogen (2.3%H2O/N2) was used as an oxidation atmosphere. Kovar oxidation was diffusion-contolled and the activation energy was 2.51 kcal/mol at 600-900$^{\circ}C$ After oxidation at 600$^{\circ}C$ the oxidation layer was under 1$\mu\textrm{m}$ thickness and crystalline phase was spinel which was found to be suitable for the Kovar-to-glass sealing.

  • PDF

Bonding Mechanism of Direct Copper to Glass Seal in an Evacuated Tube Solar Collector (태양열 집열기에 사용되는 구리-유리관 접합기구)

  • 김철영;남명식;곽희열
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1000-1007
    • /
    • 2001
  • In an evacuated tube solar collector, the stable sealing of the heat pipe to the glass tube is important for the collector to use for a long period of time. The sealing of copper tube to the glass is quite difficult because of the large differences in the physical and chemical properties of the two materials. In this study, therefore, a proper copper oxide layer was induced to improve the chemical bonding of the two materials, and the oxidation state of copper and the interface between copper and glass were examined by XRD, SEM and EDS. Its bonding strength was also measured. Cu$_2$O was formed when the bare copper was heat-treated under 600$^{\circ}C$, while CuO oxide layer was formed above that temperature. The bonding state of CuO to the copper was very poor. The borate treatment of the copper, however, extend the stable forming of Cu$_2$O layer to 800$^{\circ}C$. Borosilicate glass tube was sealed to a copper tube by Housekeeper method only when the sealing part was covered with Cu$_2$O layer. The bonding strength at the interface was measured 354.4N, its thermal shock resistance was acceptable.

  • PDF

Vacuum Sealing Technology of the Flat Panel Display by using the Frit Glass Heatable in Vacuum (진공에서 소성 가능한 프릿을 이용한 평판디스플레이 진공실장기술)

  • Kwon, Sang Jik;Yoo, In Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.181-185
    • /
    • 2016
  • One of the important issues for fabricating the microelectronic display devices such as FED, PDP, and VFD is to obtain a high vacuum level inside the panel. In addition, sustaining the initial high vacuum level permanently is also very important. In the conventional packing technology using a tabulation method, it is not possible to obtain a satisfiable vacuum level for a proper operation. In case of FED, the poor vacuum level results in the increase of operating voltage for electron emission from field emitter tips and an arcing problem, resultantly shortening a life time. Furthermore, the reduction of a sealing process time in the PDP production is very important in respect of commercial product. The most probable method for obtaining the initial high vacuum level inside the space with such a miniature and complex geometry is a vacuum in-line sealing which seals two glass plates within a high vacuum chamber. The critical solution for the vacuum sealing is to develop a frit glass to avoid the bubbling or crack problems during the sealing process at high temperature of about $400^{\circ}C$ under the vacuum environment. In this study, the suitable frit power was developed using a mixture of vitreous and crystalline type frit powders, and a vacuum sealed CNT FED with 2 inch diagonal size was fabricated and successfully operated.