• Title/Summary/Keyword: glass panel cracking

Search Result 4, Processing Time 0.017 seconds

Prediction of seismic cracking capacity of glazing systems

  • O'Brien, William C. Jr.;Memari, Ali M.;Eeri, M.
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.101-132
    • /
    • 2015
  • This research formulates a closed-form equation to predict a glass panel cracking failure drift for several curtain wall and storefront systems. An evaluation of the ASCE 7-10 equation for Dclear, which is the drift corresponding to glass-to-frame contact, shows that the kinematic modeling assumed for formulation of the equation is sound. The equation proposed in this paper builds on the ASCE equation and offers a revision of that equation to predict drift corresponding to cracking failure by considering glazing characteristics such as glass type, glass panel configuration, and system type. The formulation of the proposed equation and corresponding analyses with the ASCE equation is based on compiled experimental data of twenty-two different glass systems configurations tested over the past decade. A final comparative analysis between the ASCE equation and the proposed equation shows that the latter can predict the drift corresponding to glass cracking failure more accurately.

Static finite element analysis of architectural glass curtain walls under in-plane loads and corresponding full-scale test

  • Memari, A.M.;Shirazi, A.;Kremer, P.A.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.365-382
    • /
    • 2007
  • A pilot study has been conducted to guide the development of a finite element modeling formulation for the analysis of architectural glass curtain walls under in-plane lateral load simulating earthquake effects. This pilot study is one aspect of ongoing efforts to develop a general prediction model for glass cracking and glass fallout for architectural glass storefront and curtain wall systems during seismic loading. For this study, the ANSYS finite element analysis program was used to develop a model and obtain the stress distribution within an architectural glass panel after presumed seismic movements cause glass-to-frame contact. The analysis was limited to static loading of a dry-glazed glass curtain wall panel. A mock-up of the glass curtain wall considered in the analysis with strain gages mounted at select locations on the glass and the aluminum framing was subjected to static loading. A comparison is made between the finite element analysis predicted strain and the experimentally measured strain at each strain gage location.

The effect of curvature on the impact response of foam-based sandwich composite panels

  • Yurddaskal, Melis;Baba, Buket Okutan
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.983-997
    • /
    • 2016
  • The aim of this study is to investigate the impact behavior and impact-induced damage of sandwich composites made of E-glass/epoxy face sheets and PVC foam. The studies were carried out on square flat and curved sandwich panels with two different radius of curvatures. Impact tests were performed under impact energies of 10 J, 25 J and 80 J using an instrumented drop-weight machine. Contact force and displacement versus time and contact force- displacement graphs of sandwich panels were presented to determine the panel response. Through these graphs, the energy absorbing capacity of the sandwich panels was determined. The impact responses and failure modes of flat and curved sandwich panels were compared and the effect of curvature on sandwich composite panel was demonstrated. Testing has shown that the maximum contact force decrease while displacement increases with increasing of panel curvature and curved panels exhibits mixed failure mode, with cylindrical and cone cracking.

Characteristic Analysis of Al Films Grown on Plastic Substrates and Glass Substrates (고분자 플라스틱 기판과 유리 기판위에 증착한 알류미늄 박막 특성 분석)

  • Lee, Myoung-Jae;Kwak, Sung-Kwan;Kim, Dong-Sik;Kim, Jang-Kwon
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.6-10
    • /
    • 2002
  • Al films (1000~4000${\AA}$)were deposited on glass and polymer(polyethersulfine) plastic substrates by DC-magnetron sputtering for plastic-based flat-panel displays. A stepped heating process was used both to improve the electrical characteristics and to diminish the thermal expansion of the polymer substrates. Following this procedure, we could succeed in sputtering Al films without any cracking or shrinkage of the polymer substrates. The treatment temperatures and deposited process of Al films were under 200$^{\circ}C$. Also, this low temperature fabrication process allows the application of plastic substrates. Scanning Electrom Microscopy, Atomic Force Microscopy, X-ray Dffractometry, and electrical measurements such as resistivity measurements were performed to investigate the properties of deposited the Al films and their reliability.