• 제목/요약/키워드: glass fiber textile

검색결과 51건 처리시간 0.021초

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제9권3호
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

유리섬유(glass fiber) 가공

  • 박병기
    • 한국염색가공학회지
    • /
    • 제2권3호
    • /
    • pp.65-75
    • /
    • 1990
  • 유리를 압출하여 필라멘트형으로 제조하면 많은 소비자들의 요구를 충족시킬 수 있는 장식용 섬유로서 유용한 방적 재료가 얻어진다. 또한 유리의 고강도와 고탄성률을 고려하여 많은 산업용 직물과 복합재료의 보강재료에 이용된다. 본고에서는 유리섬유의 제조, 분류, 조성, 성질, 특성 등에 대해서 설명하고, 가공측면에서 표면처리 기술, Pre-preg의 제조와 용도, 필터백의 특징과 응용, 유리커튼의 특징과 제조, 방충망의 제조, 고무보강 기술에 대해서 언급하고저 한다.

  • PDF

m-Aramid/PAA 블렌딩 필름의 제조 및 특성 (Preparation and Characteristics of Poly(m-phenyleneisophthalamide)/Poly Amic Acid Blended Film)

  • 이지수;장아영;권지은;이승우;이상오;이재웅
    • 한국염색가공학회지
    • /
    • 제35권4호
    • /
    • pp.221-230
    • /
    • 2023
  • Meta-aramid and polyamic acid were separated and the manufactured films were analyzed for their integration and logarithmic properties. The miscibility of meta-aramid and polyamic acid was analyzed by Fourier transform infrared spectroscopy and scanning electron microscopy. Using calorimetric analysis and differential scanning calorimetry, the storage of meta-aramid and polyamic acid, indicated on the right side of the column, was analyzed. It was confirmed that the initial thermal resistance occurs because the polyamic acid is accounted for in the meta-aramid, and the glass transition temperature and persistence phenomenon are explained.

Crystallization and Molecular Relaxation of Poly(Ethylene Terephthalate) Annealed in Supercritical Carbon Dioxide

  • Jung, Yong-Chae;Cho, Jae-Whan
    • Fibers and Polymers
    • /
    • 제6권4호
    • /
    • pp.284-288
    • /
    • 2005
  • Poly(ethylene terephthalate) was annealed at different temperature and pressure of supercritical carbon dioxide $(CO_2)$ using samples quenched from the melt. Crystallization and molecular relaxation behavior due to $CO_2-annealing$ of samples were investigated using differential scanning calorimetric and dynamic mechanical measurements. The glass transition and crystallization temperatures significantly decreased with increasing temperature and pressure of $CO_2$. The dynamic mechanical measurement of samples annealed at $150^{\circ}C$ in supercritical $CO_2$ showed three relaxation peaks, corresponding to existence of different amorphous regimes such as rigid, intermediate, and mobile domains. As a result, the mobile chains were likely to facilitate crystallization in supercritical state. It also led to the decreased modulus of $CO_2-annealed$ samples with increasing pressure.

Synthesis and Hydrophilicities of Poly(ethylene 2,6-naphthalate)/ Poly(ethylene glycol) Copolymers

  • Son, Jun-Sik;Ji, Dong-Sun
    • Fibers and Polymers
    • /
    • 제4권4호
    • /
    • pp.156-160
    • /
    • 2003
  • Poly(ethylene 2,6-naphthalate) (PEN)/Poly(ethylene glycol) (PEG) copolymers were synthesized by two step reaction during the melt copolymerization process. The first step was the esterification reaction of dimethyl-2,6-naphthalenedicarbox-ylate (2,6-NDC) and ethylene glycol (EG). The second step was the condensation polymerization of bishydroxyethylnaphthalate (BHEN) and PEG. The copolymers contained 10 mol% of PEG units with different molecular weights. Structures and thermal properties of the copolymers were studied by using $^1{H-NMR}$, DSC, TGA, etc. Especially, while the intrinsic viscosities of PEN/PEG copolymers increased with increasing molecular weights of PEG, but the glass transition temperature, the cold crystallization temperature, and the weight loss temperature of the copolymers decreased with increasing molecular weights of PEG. Consequently, the hydrophilicities by means of contact angle measurement and moisture content of the copolymer films were found to be significantly improved with increasing molecular weights of PEG.

고무강화 복합재료의 지반용 특성 평가 (Assessment of Geosynthetic Properties of Rubber Reinforced Composites)

  • 전한용
    • Elastomers and Composites
    • /
    • 제34권3호
    • /
    • pp.247-252
    • /
    • 1999
  • 보강 및 차수재인 지반용 고무재료를 열융착법에 의해 제조하였으며 환경공학분야에 적용을 위해 성능을 평가하였다. 이들 재료를 제조하는데 스펀본드 폴리에스테르 부직포, 유리섬유매트, 고강력 폴리에스테르사를 이용한 직포형 지오그리드를 기재로, SBS 함유 탄성 bitumen과 아스팔트를 보강재로 각각 사용하였다. 유리섬유 매트와 지오그리드를 기재로 사용한 지반용 재료의 경우 역학적성질이 우수하였으며, 부직포와 탄성 bitumen을 기재로한 경우에는 투수성이 우수하였다. 고무와 아스팔트를 혼합한 경우 연화점은 거의 변화가 없었으며, 고온에서의 치수안정성은 $120^{\circ}C$의 경우 두드러진 수축이 발생하지 않았다. 지반용 고무재료의 자외선에 대한 저항성은 가시적인 변화가 나타나지 않았다.

  • PDF

Epoxidized Polybutadiene as a Thermal Stabilizer for Poly(3-hydroxybutyrate). 1. Effect of Epoxidation on the Thermal Properties of Polybutadiene

  • Park, Ju-Yol;Lee, Jong-Keun;Park, Won-Ho
    • Fibers and Polymers
    • /
    • 제3권3호
    • /
    • pp.109-112
    • /
    • 2002
  • Polybutadiene(PB) was epoxidized to various extents with m-chloroperbenzoic acid (MCPBA) in homogeneous solution. The thermal properties of the epoxidized PBs were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). As a result of epoxidation the glass transition temperature (Tg) of PB increased by approximately $0.8^{\circ}$ for each 1 mol% of epoxidation. The thermal decomposition of the epoxidised PBs occurred in two-step process, while that of PB exhibited apparent one-step degradation process.

FRP 보강적층판의 접착성능 및 파괴인성평가 (Adhesive Performance and Fracture Toughness Evaluation of FRP-Reinforced Laminated Plate)

  • 정홍주;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권6호
    • /
    • pp.868-875
    • /
    • 2015
  • 목구조물 접합부에 기존의 슬릿(slit)형 강판을 대체하기 위해서 FRP (Fiber Reinforced Plastic) 보강적층판을 제작하였다. 보강재, 접착제 종류에 따라 총 4가지 타입의 FRP 보강적층판을 제작하였으며, 접합부 적용 전 KSF 3021과 KSF 2160에 의거한 박리실험과 ASTM D5045-99에서 제안한 Compact Tension (CT)형 파괴인성 시험을 실시하였다. 접착성능 시험결과 GFRP textile, GFRP sheet, GFRP Textile-Sheet 타입의 FRP 보강적층판은 침지 및 내수침지박리 시험에서 모두 KS 기준인 박리율 5% 이하를 만족하였다. 그러나 Aramid 타입의 시험편은 침지박리율 4.8%로 기준을 만족하였으나 내수침지박리율 70%로 합격기준을 만족하지 못하였다. 파괴인성 시험결과 단판만을 교차적층 시킨 대조군시험편보다 목재 대비 보강재 체적비를 23%로 함으로서 FRP 보강적층판의 내력이 2~4배 증가하였다. 그중에서도 GFRP Textile-Sheet 타입의 시험편이 하중 평행방향의 유리섬유 배열로 인해 할렬파단을 억제하면서 대조군 대비 응력확대계수 비가 61% 증가되어 파괴를 가장 크게 억제하는 것으로 확인되었다. FRP 보강적층판과 비금속 dowels을 사용한 접합부의 인장형 전단내력은 금속접합에 비해 약 12% 낮은 내력이 측정되었다.

소취 섬유의 제조에 관한 연구(III) - 산화티탄(IV)을 이용한 소취 섬유의 제조 및 $TiO_2$ sol 용액의 농도가 소취율에 미치는 영향 - (Study for the Preparation of Deodorizing Fiber( III ) - Preparations of Deodorizing Fibers using $TiO_2$ and Effects of $TiO_2$ sol Concentration on the Deodorant Activity-)

  • 박수민;오선화;강영수
    • 한국염색가공학회지
    • /
    • 제14권3호
    • /
    • pp.11-18
    • /
    • 2002
  • The preparations of deodorizing fibers using $\textrm{TiO}_2$ have been investigated. $\textrm{TiO}_2$ is known to be an excellent photocatalyst for the degradation of organic and inorganic contaminants in water. $\textrm{TiO}_2$ catalyst have been supported on the glass fiber by a dip-coating procedure. The resulting materials have been characterized by XRD and SEM. The immobilized catalysts were tested in the photocatalytic degradation of $\textrm{NH}_3$, $\textrm{CH}_3\textrm{SH}$ and $\textrm{CH}_3\textrm{CHO}$. The deodorant activity(D.A.) of these deodorizing fibers was measured by chromogenic gas detector tubes. The efficient deodorant activity results have been achieved through the increase of $\textrm{TiO}_2$ sol concentration.

사출 성형공정 압력에 따른 PA6/GF 복합재료의 물리적 특성 및 성능 예측 시뮬레이션에 관한 연구 (A Study on the Mechanical Properties and Performance Prediction Simulation of PA6/GF Composite Materials with Injection Molding Pressure)

  • 유성훈;김민성;윤현성;박종수;전성민;심지현
    • 한국염색가공학회지
    • /
    • 제34권1호
    • /
    • pp.46-57
    • /
    • 2022
  • In this study, the relationship between fiber orientation and mechanical properties with the injection pressure of polyamide-6/glass fiber composite materials manufactured by the injection molding process was investigated. Also, an actual experimental data and finite element model-based simulation data were analyzed. Specimens were manufactured through the injection molding process setting the injection pressure differently to 700, 800, 900, and 1000 bar, respectively. A morphological analysis and orientation of the PA6/GF composite material were observed using Optical microscope. Through tensile and flexural strength tests, the mechanical properties of the PA6/GF composite materials with the injection pressure were studied. As a result, it was confirmed that the mechanical properties were the superior under the injection pressure of 900 bar molding conditions. In addition, the mechanical properties of the actually manufactured specimen (PA6/GF) and virtual engineering S/W((Digimat, Abaqus) were used to compare and analyze the analysis results for the mechanical properties, and based on the reliable DB, the physical properties of the PA6/GF composite characteristics were studied.