• Title/Summary/Keyword: glacial period

Search Result 110, Processing Time 0.024 seconds

Lakes and Palaeolakes in Mongolia and Northwestern China

  • Michael, Walther;Bernd, Wunnemann;Altangerel, Tshimeksaichan
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.17-17
    • /
    • 2004
  • The Pleistocene lake level and climate development is described by proxies from sediment, pollen and diatom records in Mongolia and Northwest-China. It could be proved that higher lake levels seem to have existed during the old and mid Pleistocene period interpreted on the base of geomorphological and sedimentological reords. They are dated in a relativ time scale. The lake basins are filled up to 300 m by limnic deposits, which foused on a constant water balance of more than 700.000 years. Late Glacial and Holocene lake level fluctuations and climate changes can be proved by biostratigraphic records pointing to dry and wet phases. Only for the youngest history desiccation of some lakes are related to human impact.

  • PDF

Global Warming and Alpine Vegetation

  • Kong, Woo-seok
    • The Korean Journal of Ecology
    • /
    • v.22 no.6
    • /
    • pp.363-369
    • /
    • 1999
  • Reconstruction of the past vegetational changes of Korea in connection with climate changes enables to understand the impacts of past and future global warming on alpine vegetation. Despite the early appearance of the cold-tolerant vegetation since the Mesozoic Era. the occurrence of warmth-tolerant vegetation during the Oligocene and Miocene implies that most of alpine and subalpine vegetations have been confined to the alpine and subalpine belts of northern Korean Peninsula. The presence of cold-episodes during the Pleistocene. however. might have caused a general southward and downslope expansions of cold-tolerant alpine and subalpine vegetation. But the climatic warming trend during the Holocene or post-glacial period eventually has isolated cold-tolerant alpine and subalpine vegetation mainly in the northern Korea. but also on scattered high mountains in the southern Korea. The presence of numerous arctic-alpine and alpine plants on the alpine and subalpine belts is mainly due to their relative degree of sensitivity to high summer temperatures. Global warming would cause important changes in species composition and altitudinal distributional pattern. The altitudinal migration of temperate vegetation upward caused by climatic warming would eventually devastate alpine plants.

  • PDF

Moss on the Matanuska Glacier, Alaska

  • Kim, Ki-Tai
    • Journal of Ecology and Environment
    • /
    • v.29 no.2
    • /
    • pp.171-173
    • /
    • 2006
  • A species of moss (Musci) is observed on the Matanuska Glacier of Alaska in the middle of summer. The life cycle of the moss is perfectly observed. This is very rare and special because the environment is completely glacial and barren of plants. Matanuska is a gigantic glacier formed about 18,000 years ago in the Palmer region near Anchorage. It has a dimension of 27 miles in length and 4 miles in width. The glacier is located in the region between Anchorage and Mount McKinley. This huge glacier carved the Matanuska valley thousands of years ago. The mighty glacier also forms the Matanuska River. The summer weather is very changeable throughout the day: warm, cold, sunshiny, windy, cloudy, rainy, snowy, foggy, etc. The Arctic clouds move very quickly and create variable climates. So there are four seasons even in one day during the summer period of this region.

The Properties of Pusan Clay : Soil and Mineralogy of Clay Sediments in Noksan Area, Nakdong River Estuary (부산점토의 특성 : 녹산지역 점토 퇴적물의 광물조성과 토질)

  • 이선갑;김성욱;황진연;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.741-746
    • /
    • 2003
  • The foundation of Noksan area is composed of consolidified sediments including clay mineral, quartz, plagioclase and calcite. The mineral compositions vary dependent on the depth. That is, at the depth of 0-15 meters quartz and plagioclase are more abundant than clay mineral, at the depth of 17-39 meters clay minerals and calcite are more than quartz and plagioclase, at the depth deeper than 40 meters, the amounts of quartz and plagioclase increase slightly and that of clay minerals decrease. Clay minerals of the clayey sediments include illite, smectite, kaolinite and chlorite. At the depth 17-39 meters smectite is abundant and kaolinite is little relatively The pH of suspension is various between 3-9 and decrease to 3-5 at the depth deeper than 40 meters. The result of soil test of clay sediments, water content shows that liquid limit, plastic limit, particle size, unconfined compressive strength varies depending on the depth. The variation of mineralogical, geochemical, engineering properties of soil with the depth are probably due the differing sediments of different sedimentary environment. That is, these variations are considered to be correlated with the sedimentary environment change resulting from the change from continental environment to ocean environment due to the transgression of the interglacial period after the regression the latest glacial period.

  • PDF

The Stratigraphic and Sedimentologic Natures of the Kanweoldo Deposit Overlain by the Holocene Tidal Deposits, Cheonsu Bay, West Coast of Korea (한국 서해 천수만 북동부에 발달한 제4기 현세 조간대층 하위의 간월도층 연구)

  • 김여상;박용안
    • The Korean Journal of Quaternary Research
    • /
    • v.2 no.1
    • /
    • pp.13-24
    • /
    • 1988
  • The deposit (named Kanweoldo deposit) unconformably overlain by the Holocene tidal deposit is mainly exposed along the tidal channel of the Sajangpo tidal flat of Cheonsu Bay, west coast of Korea. The Kanweoldo deposit's sedimentary textures, sedimentary structures and erosion surfaces of the stratigraphic events have been investigated. The Kanweoldo deposit is mainly composed of mud, silt and sandy mud. The sedimentary criteria indicating intertidal deposit i.e. lenticular bedding, thinly and coarsely interlayered bedding, wavy lamination and flaser bedding are positively found in the Kanweoldo deposit. The deposit is semi-consolidated and brown in color, and has erosional contact (stratigraphic boundary) with the overlying Holocene tidal deposit. Considering such Kanweoldo deposit's sedimentary characteristics and stratigraphic relation with the Holocene tidal deposit, the Kanweoldo deposit seems to be deposited under intertidal environment during Riss-Wurm interglacial period and subaerially exposed and eroded during the last glacial period.

  • PDF

The Geomorphic Analysis of the Yangsan Fault Area (梁山斷層 周邊의 地形分析)

  • Jo, Wha-Ryong
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • Yangsan Fault stretches from Yonghae to the mouth of Naktong River in the south-eastern part of Korean Peninsula. The river terraces originated from alluvial fans are classified into the High, Middle, and Low Surfaces. The High Surfaces which were distributed in fragments are considered to be formed during the Mindel/Riss Interglacial period or the former periods. But the Middle and Low Surfaces which were distributed widely are considered to be formed during the Riss and Last Glacial period respecitively. The geomorphic and geologic features around Yangsan Fault suggest that the fault is right strike-slip fault, and some geomorphic evidences of active fault were found on Eonyang and Sinkwang Basin.

  • PDF

Tides and Tidal Currents of the Yellow and East China Seas during the Last 13000 Years

  • Oh, Im-Sang;Lee, Dong-Eun
    • Journal of the korean society of oceanography
    • /
    • v.33 no.4
    • /
    • pp.137-145
    • /
    • 1998
  • In order to investigate the paleotidal structure and current pattern in the Yellow and East China seas (YECS) since the late Wisconsin, which is the last glacial maximum period, a two-dimensional version of the Princeton ocean model is used. We assume that subtracting the sea-level differences from the present one can produce paleobasins and that the paleotide did not differ greatly from the present one in the adjacent deep seas, the northwestern Pacific Ocean and the East Sea. We could successfully simulate the paleo-M$_2$ tides and tidal currents of 9000, 11000 and 13000 yr B.P. The result of the model shows considerable differences in the tidal pattern in each period. As the eustatic sea level rose, the amplitudes of the paleotides and the number of the amphidromic points generally increased, but the tidal currents in each paleobasin were strong and about the same order as the present day's. Based on these paleotide calculations, we suggest that there should have been active erosion in the paleobasin as in the present YECS, and the erosion should have played an important role on widening the paleobasin to the present shape, YECS.

  • PDF

The comparison and chronology of the lower marine terraces in the mid-eastern coast of Korean peninsula (韓反島 中部東海岸 低位海成段丘의 對比와 編年)

  • ;Choi, Seong-Gil
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.2
    • /
    • pp.103-119
    • /
    • 1995
  • This Paper aims to compare the lower marine terraces distributed from Muckho to Gangneung in the mid-eastern coast of Korean peninsula by the geomorphic method of using characteristies of terrace features and terrace deposits, paleosol, and fossil cryogenic structures, and to estimate the age of the lower marine terraces on the basis of the comparisons of those with the characteristics of thalassostatic terrace in adjacent rivers. The 1ower marine terraces in this area can be classified into two levels, i.e., lower marine terrace I and II surfaces, in desending order, according to the difference of former shoreline altitude. The former shoreline heights of the lowerm marine terrace I and II surfaces are 18m and 10m, respectiveiy. The width of the I surface is broader and distributed more continuousiy than that of II surface. Daejin I surface in Muckho coast, and Myeongju and Anin terrace in Gangneung coast could be classified into the lower marine terrace I surface, and Daejin II surfaCe into II surface. The Surface of ancient shore platform of the lower marine terrace I and II surfaces were weathered, and the color of the terrace deposit ranges from red to reddish brown. And this terrace deposit is covered with slope deposit of Last Glacial or fossil periglacial structures (platy structure and vecicle) of Last Glacial are formed in terrace deposit. These facts indicate that the lower marine terrace I and II surfaces had been formed before the Last Glacial, and then affected by chemical weathering under warm environment, finally followed by cold period. But the deposit of the lower marine terrace I surface is more weathered than that of II surface. And pseudogleyed red soil, which is developed in I but not in II surface, could be judged to have been formed in the Last Interglacial culmination stage (Oxygen isotope stage 5e). Therefore, in terms of the degree of weathering of the terrace deposit and the existence of pseudogleyed red soil, the age of both terrace is thought to be a little different. And the characteristics of the above mentioned II surface are accord with those of thalassostatic terrace formed in middle or late period of the Last Interglacial (5e or 5a). Thus on the basis of above all points, the lower marine terrace I and II surfaces in this area could be seen to have formed in the Last Interglacial culmination stage and middle or late period of the Last Interglacial, respectively. Because the lower mamine terrace I surface is broadry distributed in the eastern coast of Korea nPeninsula, the surface could be used to be a key surface in studying Quaternary marine terraces.

  • PDF

Application of In-situ Produced Cosmogonic $^{10}$ Be and $^{26}$ Al for Estimating Erosion Rate and Exposure Age of Tor and Block Stream Detritus: Case Study from Mt. Maneo, South Korea (우주기원 방사성 핵종을 이용한 만어산 암설지형의 침식률 및 노출연대 측정)

  • Yeong Bae Seong;Jong Wook Kim
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.3
    • /
    • pp.389-399
    • /
    • 2003
  • CRN (Cosmogenic radionuclide) methodology has been a versatile tool applicable to a wide range of geomorphology. This study was underiaken to ascertain the rate of erosion and exposure age of mountain-top detritus (tors and block streams) on Mt. Maneo by employing the concentrations of in-situ produced cosmogenic $^{10}$ Be and $^{26}$ Al from bedrock surfaces that are exposed to cosmic rays. The results suggest that tors on the summit were positioned here during the glacial period but no later than 65ka and block streams have been stabilized also since the last glacial period but no later than 38ka. The tors on the summit have been eroded at a slower rate (9m/Ma) than blocks on the hillslope (15m/Ma) since the initial abrupt exposure of each landform to cosmic rays, suggesting that there is a slight difference in the rate of erosion between the summit and the hillslope, and that the local relief between the two areas has been increased. When the $^{26}$ Al/$^{10}$ Be-$^{10}$ Be concentrations from samples are plotted in Lal's steady-state erosion island, one sample (from a for) has complex exposure histories, which can be explained by the occurrence of multiple chipping event of 5cm to 60cm in length on the surface of the rock.

Late Quaternary Sequence Stratigraphy in Kyeonggi Bay, Mid-eastern Yellow Sea (황해 중동부 경기만의 후기 제4기 순차층서 연구)

  • Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.242-258
    • /
    • 2012
  • The Yellow Sea has sensitively responded to high-amplitude sea-level fluctuations during the late Quaternary. The repeated inundation and exposure have produced distinct transgression-regression successions with extensive exposure surfaces in Kyeonggi Bay. The late Quaternary strata consist of four seismic stratigraphic units, considered as depositional sequences (DS-1, DS-2, DS-3, and DS-4). DS-1 was interpreted as ridge-forming sediments of tidal-flat and estuarine channel-fill facies, formed during the Holocene highstand. DS-2 consists of shallow-marine facies in offshore area, which was formed during the regression of Marine Isotope Stage (MIS)-3 period. DS-3 comprises the lower transgressive facies and the upper highstand tidal-flat facies in proximal ridges and forced regression facies in distal ridges and offshore area. The lowermost DS-4 rests on acoustic basement rocks, considered as the shallow-marine and shelf deposits formed before the MIS-6 lowstand. This study suggests six depositional stages. During the first stage-A, MIS-6 lowstand, the Yellow Sea shelf was subaerially exposed with intensive fluvial incision and weathering. The subsequent rapid and high amplitude rise of sea level in stage-B until the MIS-5e highstand produced transgressive deposits in the lowermost part of the MIS-5 sequence, and the successive regression during the MIS-5d to -5a and the MIS-4 lowstand formed the upperpart of the MIS-5 sequence in stage-C. During the stage-D, from the MIS-4 lowstand to MIS-3c highstand period, the transgressive MIS-3 sequence formed in a subtidal environment characterized by repetitive fluvial incision and channel-fill deposition in exposed area. The subsequent sea-level fall culminating the last glacial maximum (Stage-E) made shallow-marine regressive deposits of MIS-3 sequence in offshore distal area, whereas it formed fluvial channel-fills and floodplain deposits in the proximal area. After the last glacial maximum, the overall Yellow Sea shelf was inundated by the Holocene transgression and highstand (Stage-F), forming the Holocene transgressive shelf sands and tidal ridges.