• Title/Summary/Keyword: ginsenoside-Rg3

Search Result 541, Processing Time 0.033 seconds

Changes in Ginsenosides Composition of Ginseng Flower Buds Extracts after an Ultrasonication Process (초음파 처리에 의한 인삼꽃대 엑스의 진세노사이드 성분 변화)

  • Nam, Yun Min;Kwon, Jue Hee;Hong, Jeong Tae;Yang, Byung Wook;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.73-78
    • /
    • 2016
  • The purpose of this study is to develop a new preparation process of ginseng (Panax ginseng) flower buds extracts featuring high concentration of ginsenosides Rg2, Rg3, Rg5, F4 and Rh1, red ginseng special components. Chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by the HPLC. Extracts of ginseng flower buds were processed under several treatment conditions of ultrasonication (at $100^{\circ}C$). The results showed that the quantity of ginsenoside Rg6 increased by over 8.8% at the 16 hours of ultrasonication. Ginseng flower buds ethanol extract compared with other process times. The result of UGF-16 indicates that the ultrasonication processed ginseng flower buds extracts (at $100^{\circ}C$) treated for 16 hours produced the highest amount of ginsenoside F4 (8.833%), Rg3 (2.230%), Rg5 (2.339%) and Rg2 (1.002%).

Ginsenoside Rg1 promotes browning by inducing UCP1 expression and mitochondrial activity in 3T3-L1 and subcutaneous white adipocytes

  • Lee, Kippeum;Seo, Young-Jin;Song, Ji-Hyoen;Chei, Sungwoo;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.589-599
    • /
    • 2019
  • Background: Panax ginseng Meyer is known as a conventional herbal medicine, and ginsenoside Rg1, a steroid glycoside, is one of its components. Although Rg1 has been proved to have an antiobesity effect, the mechanism of this effect and whether it involves adipose browning have not been elucidated. Methods: 3T3-L1 and subcutaneous white adipocytes from mice were used to access the thermogenic effect of Rg1. Adipose mitochondria and uncoupling protein 1 (UCP1) expression were analyzed by immunofluorescence. Protein level and mRNA of UCP1 were also evaluated by Western blotting and realtime polymerase chain reaction, respectively. Results: Rg1 dramatically enhanced expression of brown adipocyte-especific markers, such as UCP1 and fatty acid oxidation genes, including carnitine palmitoyltransferase 1. In addition, it modulated lipid metabolism, activated 5' adenosine monophosphate (AMP)-activated protein kinase, and promoted lipid droplet dispersion. Conclusions: Rg1 increases UCP1 expression and mitochondrial biogenesis in 3T3-L1 and subcutaneous white adipose cells isolated from C57BL/6 mice. We suggest that Rg1 exerts its antiobesity effects by promoting adipocyte browning through activation of the AMP-activated protein kinase pathway.

Ginsenosides from the Roots of Korean Cultivated-Wild Ginseng

  • Yang, Min-Cheol;Seo, Dong-Sang;Hong, Jong-Ki;Hong, Sung-Hyun;Kim, Young-Choong;Lee, Kang-Ro
    • Natural Product Sciences
    • /
    • v.14 no.3
    • /
    • pp.171-176
    • /
    • 2008
  • Column chromatographic separation of 70% EtOH extract of the roots of Korean cultivated-wild ginseng led to the isolation of ten ginsenosides (1 - 10). The isolated compounds were identified as ginsenoside $Rg_1$ (1), ginsenoside Re (2), ginsenoside Rc (3), ginsenoside $Rb_1$ (4), ginsenoside $Rb_2$ (5), ginsenoside Rd (6), ginsenoside $Rg_3$ (7), ginsenoside $F_2$ (8), ginsenoside $Rb_3$ (9), and ginsenoside $Rd_2$ (10) by physicochemical and spectroscopic methods. The compounds (1 - 10) were for the first time isolated from the roots of Korean cultivated-wild ginseng.

A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease

  • Li, Naijing;Liu, Ying;Li, Wei;Zhou, Ling;Li, Qing;Wang, Xueqing;He, Ping
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • Background: Alzheimer's disease (AD) is a progressive brain disease, for which there is no effective drug therapy at present. Ginsenoside Rg1 (G-Rg1) and G-Rg2 have been reported to alleviate memory deterioration. However, the mechanism of their anti-AD effect has not yet been clearly elucidated. Methods: Ultra performance liquid chromatography tandem MS (UPLC/MS)-based metabolomics was used to identify metabolites that are differentially expressed in the brains of AD mice with or without ginsenoside treatment. The cognitive function of mice and pathological changes in the brain were also assessed using the Morris water maze (MWM) and immunohistochemistry, respectively. Results: The impaired cognitive function and increased hippocampal $A{\beta}$ deposition in AD mice were ameliorated by G-Rg1 and G-Rg2. In addition, a total of 11 potential biomarkers that are associated with the metabolism of lysophosphatidylcholines (LPCs), hypoxanthine, and sphingolipids were identified in the brains of AD mice and their levels were partly restored after treatment with G-Rg1 and G-Rg2. G-Rg1 and G-Rg2 treatment influenced the levels of hypoxanthine, dihydrosphingosine, hexadecasphinganine, LPC C 16:0, and LPC C 18:0 in AD mice. Additionally, G-Rg1 treatment also influenced the levels of phytosphingosine, LPC C 13:0, LPC C 15:0, LPC C 18:1, and LPC C 18:3 in AD mice. Conclusion: These results indicate that the improvements in cognitive function and morphological changes produced by G-Rg1 and G-Rg2 treatment are caused by regulation of related brain metabolic pathways. This will extend our understanding of the mechanisms involved in the effects of G-Rg1 and G-Rg2 on AD.

Acute and repeated dose 26-week oral toxicity study of 20(S)-ginsenoside Rg3 in Kunming mice and Sprague-Dawley rats

  • Li, Chunmei;Wang, Zhezhe;Li, Guisheng;Wang, Zhenhua;Yang, Jianrong;Li, Yanshen;Wang, Hongtao;Jin, Haizhu;Qiao, Junhua;Wang, Hongbo;Tian, Jingwei;Lee, Albert W.;Gao, Yonglin
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.222-228
    • /
    • 2020
  • Background: 20(S)-ginsenoside-Rg3 (C42H72O13), a natural triterpenoid saponin, is extracted from red ginseng. The increasing use of 20(S)-ginsenoside Rg3 has raised product safety concerns. Methods: In acute toxicity, 20(S)-ginsenoside Rg3 was singly and orally administrated to Kunming mice and Sprague-Dawley (SD) rats at the maximum doses of 1600 mg/kg and 800 mg/kg, respectively. In the 26-week toxicity study, we used repeated oral administration of 20(S)-ginsenoside Rg3 in SD rats over 26 weeks at doses of 0, 20, 60, or 180 mg/kg. Moreover, a 4-week recovery period was scheduled to observe the persistence, delayed occurrence, and reversibility of toxic effects. Results: The result of acute toxicity shows that oral administration of 20(S)-ginsenoside Rg3 to mice and rats did not induce mortality or toxicity up to 1600 and 800 mg/kg, respectively. During a 26-week administration period and a 4-week withdrawal period (recovery period), there were no significant differences in clinical signs, body weight, food consumption, urinalysis parameters, biochemical and hematological values, or histopathological findings. Conclusion: The mean oral lethal dose (LD50) of 20(S)-ginsenoside Rg3, in acute toxicity, is above 1600 mg/kg and 800 mg/kg in mice and rats, respectively. In a repeated-dose 26-week oral toxicity study, the no-observed-adverse-effect level for female and male SD rats was 180 mg/kg.

Enhancement of Ginsenosides Conversion Yield by Steaming and Fermentation Process in Low Quality Fresh Ginseng (증숙 발효 공정에 의한 파삼의 진세노사이드 전환 수율 증진)

  • Choi, Woon Yong;Lim, Hye Won;Choi, Geun Pyo;Lee, Hyeon Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2014
  • This study was performed to enhance contents of low molecular ginsenoside using steaming and fermentation process in low quality fresh ginseng. For increase in contents of Rg2, Rg3, Rh2 and CK in low quality fresh ginseng, a steaming process was applied at $90^{\circ}C$ for 12 hr which was followed by fermentation process at Lactobacillus rhamnosus HK-9 incubated at $36^{\circ}C$ for 72 h. The contents of ginsenoside Rg1, Rb1, Rc, Re and Rd were decreased with the steaming associated with fermentation process but ginsenoside Rg2, Rg3, Rh2 and CK increased after process. It was found that under the steaming associated with fermentation process, low molecule ginsenosides such as Rg2, Rg3, Rh2 and CK were increased as 3.231 mg/g, 2.585 mg/g and 1.955 m/g and 2.478 mg/g, respectively. In addition, concentration of benzo[${\alpha}$]pyrene in extracts of the low quality fresh ginseng treated by the complex process was 0.11 ppm but it was 0.22 ppm when it was treated with the steaming process. This result could be caused by that the most efficiently breakdown of 1,2-glucoside and 1,4-glucoside linkage to backbone of ginsenosides by steaming associated with fermentation process. This results indicate that steaming process and fermenration process can increase in contents of Rg2, Rg3, Rh2 and CK in low quality fresh ginseng.

Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5

  • Kim, Shin-Jung;Kim, An Keun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • Background: Black ginseng (Ginseng Radix nigra, BG) refers to the ginseng steamed for nine times and fine roots (hairy roots) of that is called fine black ginseng (FBG). It is known that the content of saponin of FBG is higher than that of BG. Therefore, in this study, we examined antitumor effects against MCF-7 breast cancer cells to target the FBG extract and its main component, ginsenoside Rg5 (Rg5). Methods: Action mechanism was determined by MTT assay, cell cycle assay and western blot analysis. Results: The results from MTT assay showed that MCF-7 cell proliferation was inhibited by Rg5 treatment for 24, 48 and 72 h in a dose-dependent manner. Rg5 at different concentrations (0, 25, 50 and $100{\mu}M$), induced cell cycle arrest in G0/G1 phase through regulation of cell cycle-related proteins in MCF-7 cells. As shown in the results from western blot analysis, Rg5 increased expression of p53, $p21^{WAF1/CIP1}$ and $p15^{INK4B}$ and decreased expression of Cyclin D1, Cyclin E2 and CDK4. Expression of apoptosiserelated proteins including Bax, PARP and Cytochrome c was also regulated by Rg5. These results indicate that Rg5 stimulated cell apoptosis and cell cycle arrest at G0/G1 phase via regulation of cell cycle-associated proteins in MCF-7 cells. Conclusion: Rg5 promotes breast cancer cell apoptosis in a multi-path manner with higher potency compared to 20(S)-ginsenoside Rg3 (Rg3) in MCF-7 (HER2/ER+) and MDA-MB-453 (HER2+/ER) human breast cancer cell lines, and this suggests that Rg5 might be an effective natural new material in improving breast cancer.

Korean Red Ginseng extract and ginsenoside Rg3 have anti-pruritic effects on chloroquine-induced itch by inhibition of MrgprA3/TRPA1-mediated pathway

  • Lee, Wook-Joo;Kim, Young-Sik;Shim, Won-Sik
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.470-475
    • /
    • 2018
  • Background: It was previously found that Korean Red Ginseng water extract (KRGE) inhibits the histamine-induced itch signaling pathway in peripheral sensory neurons. Thus, in the present study, we investigated whether KRGE inhibited another distinctive itch pathway induced by chloroquine (CQ); a representative histamine-independent pathway mediated by MrgprA3 and TRPA1. Methods: Intracellular calcium changes were measured by the calcium imaging technique in the HEK293T cells transfected with both MrgprA3 and TRPA1 ("MrgprA3/TRPA1"), and in primary culture of mouse dorsal root ganglia (DRGs). Mouse scratching behavior tests were performed to verify proposed antipruritic effects of KRGE and ginsenoside Rg3. Results: CQ-induced $Ca^{2+}$ influx was strongly inhibited by KRGE ($10{\mu}g/mL$) in MrgprA3/TRPA1, and notably ginsenoside Rg3 dose-dependently suppressed CQ-induced $Ca^{2+}$ influx in MrgprA3/TRPA1. Moreover, both KRGE ($10{\mu}g/mL$) and Rg3 ($100{\mu}M$) suppressed CQ-induced $Ca^{2+}$ influx in primary culture of mouse DRGs, indicating that the inhibitory effect of KRGE was functional in peripheral sensory neurons. In vivo tests revealed that not only KRGE (100 mg) suppressed CQ-induced scratching in mice [bouts of scratching: $274.0{\pm}51.47$ (control) vs. $104.7{\pm}17.39$ (KRGE)], but also Rg3 (1.5 mg) oral administration significantly reduced CQ-induced scratching as well [bouts of scratching: $216.8{\pm}33.73$ (control) vs.$115.7{\pm}20.94$ (Rg3)]. Conclusion: The present study verified that KRGE and Rg3 have a strong antipruritic effect against CQ-induced itch. Thus, KRGE is as a promising antipruritic agent that blocks both histamine-dependent and -independent itch at peripheral sensory neuronal levels.

Bioavailability of Fermented Korean Red Ginseng

  • Lee, Hyun-Jung;Jung, Eun-Young;Lee, Hyun-Sun;Kim, Bong-Gwan;Kim, Jeong-Hoon;Yoon, Taek-Joon;Oh, Sung-Hoon;Suh, Hyung-Joo
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.3
    • /
    • pp.201-207
    • /
    • 2009
  • In an effort to improve ginsenoside bioavailability, the ginsenosides of fermented red ginseng were examined with respect to bioavailability and physiological activity. The results showed that the fermented red ginseng (FRG) had a high level of ginsenoside metabolites. The total ginsenoside contents in non-fermented red ginseng (NFRG) and FRG were 35715.2 ${\mu}g$/mL and 34822.9 ${\mu}g$/mL, respectively. However, RFG had a higher content (14914.3 ${\mu}g$/mL) of ginsenoside metabolites (Rg3, Rg5, Rk1, CK, Rh1, F2, and Rg2) compared to NFRG (5697.9 ${\mu}g$/mL). The skin permeability of RFG was higher than that of NFRG using Franz diffusion cells. Particularly, after 5 hr, the skin permeability of RFG was significantly (p<0.05) higher than that of NFRG. Using everted instestinal sacs of rats, RFG showed a high transport level (10.3 mg of polyphenols/g sac) compared to NFRG (6.67 of mg of polyphenols/g sac) after 1 hr. After oral administration of NFRG and FRG to rats, serum concentrations were determined by HPLC. Peak concentrations of Rk1, Rh1, Rc, and Rg5 were approximately 1.64, 2.35, 1.13, and 1.25-fold higher, respectively, for FRG than for NFRG. Furthermore, Rk1, Rh1, and Rg5 increased more rapidly in the blood by the oral administration of FRG versus NFRG. FRG had dramatically improved bioavailability compared to NFRG as indicated by skin permeation, intestinal permeability, and ginsenoside levels in the blood. The significantly greater bioavailability of FRG may have been due to the transformation of its ginsenosides by fermentation to more easily absorbable forms (ginsenoside metabolites).