• Title/Summary/Keyword: ginsenoside-Rg3

Search Result 541, Processing Time 0.026 seconds

Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3

  • Chang, Kyung Hoon;Jo, Mi Na;Kim, Kee-Tae;Paik, Hyun-Dong
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.47-51
    • /
    • 2014
  • The transformation of ginsenoside Rb1 into a specific minor ginsenoside using Aspergillus niger KCCM 11239, as well as the identification of the transformed products and the pathway via thin layer chromatography and high performance liquid chromatography were evaluated to develop a new biologically active material. The conversion of ginsenoside Rb1 generated Rd, Rg3, Rh2, and compound K although the reaction rates were low due to the low concentration. In enzymatic conversion, all of the ginsenoside Rb1 was converted to ginsenoside Rd and ginsenoside Rg3 after 24 h of incubation. The crude enzyme (b-glucosidase) from A. niger KCCM 11239 hydrolyzed the ${\beta}$-($1{\rightarrow}6$)-glucosidic linkage at the C-20 of ginsenoside Rb1 to generate ginsenoside Rd and ginsenoside Rg3. Our experimental demonstration showing that A. niger KCCM 11239 produces the ginsenoside-hydrolyzing b-glucosidase reflects the feasibility of developing a specific bioconversion process to obtain active minor ginsenosides.

Separation of 20(R&S) Prosapogenin Isomers of Ginsenoside-$Rg_2$ and -$Rg_3$ from Ginseng Saponins by Reversed-Phase High Performance Liquid Chromatography (인삼 사포닌에서 Ginsenoside-$Rg_2$와 -$Rg_3$의 이성질체인 20(R&S) Prosapogenin들의 역상 고속 액체 크로마토그래피에 의한 분리)

  • Jeong, Seung-Il;Kim, Cheon-Suk;Lee, Yong-Gu;Lee, Ho-Sup;Kim, Il-Kwang
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.404-408
    • /
    • 1998
  • Using a reversed-phase high performance liquid chromatography, the separation of 20(S)-, 20(R)-prosapogenin stereo-isomers of ginsenoside-$Rg_2$ and of ginsenoside-$Rg_3$ in ginseng saponins has been carried out with binary solvent system. The optimum conditions for the isomer separation are as following: Nova-$Pak^{(R)}C_{18}$ (Waters, $3.9{\times}150mm$) column, $CH_3CN/CH_3CN$ (100:8, v/v) binary solvent system and the flow rate was 1.7 mL/min. The stereoisomers were separated with change of the mixture ratio of the solvent system, the solvent elution by gradient program, and then detected at 203 nm of UV detector. The simultaneous separation of mixture that were the $Rg_2$, $Rg_3$ isomers was easily performed in nonpolar solvent for $Rg_2$, polar solvent for $Rg_3$ at the same optimum conditions.

  • PDF

The Change of Ginsenoside Composition in American Ginseng (Panax quinquefolium) Extract by the Microwave and Vinegar Process (서양삼 추출물의 초단파 및 식초 처리에 의한 인삼 사포닌 성분 변화)

  • Jo, Hee Kyung;Gwak, Hyeon Hui;Im, Byung Ok;Cho, Soon Hyun;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.107-112
    • /
    • 2014
  • The purpose of this study is to develop a new preparation process of American ginseng (Panax quinquefolium) extract featuring high concentration of ginsenoside $Rg_3$, $Rg_5$, and $Rk_1$, Red ginseng special components. Chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by the HPLC. Extracts of American ginseng were processed under several treatment conditions of microwave and vinegar (about 14% acidity). The results showed that the quantity of ginsenoside $Rg_3$ increased by over 0.9% at the 20 minutes of the pH 2~4 vinegar and microwave American ginseng ethanol extract compared with other process times. The result of MAG-20 indicates that the American ginseng microwave and vinegar-processed American ginseng extracts (about 14% acidity) treated for 20 minutes produced the highest amount of ginsenoside $Rg_3$ (0.969%), $Rg_5$ (1.071%), and $Rk_1$ (0.247%). Besides, MAG-15 indicates that the microwave - and vinegar-processed American ginseng extracts (about 14% acidity) treated for 15 minutes produced the highest amount of ginsenoside $Rg_3$ (0.772%), $Rg_5$ (1.330%), and $Rk_1$ (0.386%). This indicates that American ginseng treated with microwave and vinegar had the quantity of the ginsenoside $Rg_3$ over 32 times the amount of the ginsenoside $Rg_3$ (which was not found in raw and American ginsengs) in the average commercial Red ginseng.

Patterns and Contents of Ginsenoside in Normal Root Parts and Hairy Root Lines of Panax ginseng C. A. Meyer (인삼 뿌리 부위별 및 모상근 세포주간 ginsenoside 양상 및 함량)

  • 양덕춘;양계진
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.485-489
    • /
    • 2000
  • The patterns and contents of ginsenosides were examined in normal root parts and hairy root lines of Panax ginseng C. A. Meyer. Ginsenoside-Rb$_1$, -Rb$_2$, -Rc, -Rd, -Re, -Rf, -Rg$_1$, -Rg$_2$ were detected in normal roots and hairy roots of ginseng. The patterns and contents of ginsenosides in that were very difference each other. The contents of total ginsenoside of hairy root (KGHR-1) was 17.42 mg/g dry wt, it's highest compared to others. Ginsenoside contents of hairy root (KGHR-1) was higher on ginsenoside-Rd, Rg$_1$, KGHR-5 was higher on ginsenoside-Rb$_1$, Rg$_1$, and KGHR-8 was higher on ginsenoside-Rd, Re than others. The contents of total ginsenosides on 6 years old ginseng cultured in the field were high in the order of main root, lateral root and fine roots, and content of ginsenosides in fine roots was 3.2 times higher than that in main root. The ratio of ginsenoside-Rg$_1$to total ginsenosides were about 3.43%, 8.68% and 14.18% respectively on fine root, lateral root and main root, it's very lower than that in hairy roots. It is suggested that specific ginsenosides can be produce in cultures of ginseng hairy roots.

  • PDF

Effects of Ginsenoside Rg3 on Early-stage Inflammatory Response in Spinal Cord Compression of Rodents (Ginsenoside Rg3이 흰쥐 척수압박손상의 초기 염증반응에 미치는 영향)

  • Jeong, Beoul;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.23 no.2
    • /
    • pp.1-15
    • /
    • 2013
  • Objectives : In present study, we investigated the effects of ginsenoside Rg3 on early-stage inflammatory response in spinal cord compression of rodents. Methods : Spinal cord injury(SCI) was induced by a vascular clip method(30 g, 5 min) on the spinal cord of mice. Rg3 was treated orally at 1 hour prior to the SCI induction. Messenger ribonucleic acid(mRNA) expression of tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), interleukin-1${\beta}$(IL-1${\beta}$), interleukin-6(IL-6) and cyclooxygenase-2(COX-2) was measured by the real-time polymerase chain reaction(RT-PCR). Microglia in the spinal cord tissue, neurophils and COX-2 in the peri-lesion and inducible nitric oxide synthase(iNOS) expression in the ventral horn of SCI induced rats were measured by immunohistochemical stain. Results : 1. Rg3 significantly reduced the mRNA expression of TNF-${\alpha}$, IL-1${\beta}$, and COX-2 in the spinal cord tissue compared with SCI group(p<0.05, p<0.01). 2. Rg3 significantly reduced the total number of activated microglia and proportion of phagocytic form in the total activated microglia compared with SCI group(p<0.05, p<0.01). 3. Rg3 significantly reduced myeloperoxidase(MPO) positive neurophil in the peri-lesion compared with SCI group(p<0.05). 4. Rg3 reduced the COX-2 expression in the tissue and motor neurons compared with SCI group. 5. Rg3 significantly reduced iNOS positive motor neurons in the ventral horn compared with SCI group(p<0.01). Conclusions : In conclusion, we demonstrated at first that treatment of ginsenoside Rg3 could reduce significantly the levels of inflammatory mediators in a spinal cord compression model of rodents. Therefore, these results suggested that ginsenoside Rg3 may be a useful antimiflamatory therapeutic candidate for SCI.

Changes of Prosapogenin Components in Tienchi Seng (Panax notoginseng) by Ultrasonic Thermal Fusion Process

  • Lee, Jae Bum;Yang, Byung Wook;Kim, Do Hyeong;Jin, Dezhong;Ko, Sung Kwon
    • Natural Product Sciences
    • /
    • v.27 no.1
    • /
    • pp.10-17
    • /
    • 2021
  • The purpose of this study is to develop a new method of producing tienchi seng (notoginseng, Panax notoginseng) extracts featuring high concentrations of the ginsenoside Rg3, Rg5, and Rg6, special components of Korean red ginseng. The chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by HPLC. Tienchi seng was heat-processed at 100℃ and the optimum conditions were identified. The highest concentrations of total saponin (29.723%) and the ginsenoside Rg3 (1.769%), Rg5 (5.979%), and Rg6 (13.473%) were produced at 48 hours. Also, when tienchi seng was subjected to the ultrasonic thermal fusion (100℃) process, the concentrations of total saponin (30.578%), ginsenoside Rg3 (2.392%), Rg5 (6.614%), and Rg6 (13.017%) were highest at 36 hours. On the other hand, the 2-hour heat-processed extract and 2-hour ultrasonic thermal fusion-processed extract did not contain ginsenoside Rg3, Rg5, and Rg6. The ultrasonic thermal fusion process had an extraction yield that was approximately 1.26 times greater than that of the heat process. These results indicate that the highly functional tienchi seng extracts created through the ultrasonic thermal fusion process are more industrially useful than those produced using the heat process.

Transformation Techniques for the Large Scale Production of Ginsenoside Rg3 (Ginsenoside Rg3의 함량증가를 위한 변환 기술)

  • Nam, Ki Yeul;Choi, Jae Eul;Park, Jong Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.401-414
    • /
    • 2013
  • Ginsenoside Rg3 (G-Rg3) contained only in red ginseng has been found to show various pharmacological effects such as an anticancer, antiangiogenetic, antimetastastic, liver protective, neuroprotective immunomodulating, vasorelaxative, antidiabetic, insulin secretion promoting and antioxidant activities. It is well known that G-Rg3 could be divided into 20(R)-Rg3 and 20(S)-Rg3 according to the hydroxyl group attached to C-20 of aglycone, whose structural characteristics show different pharmacological activities. It has been reported that G-Rg3 is metabolized to G-Rh2 and protopanaxadiol by the conditions of the gastric acid or intestinal bacteria, thereby these metabolites could be absorbed, suggesting its absolute bioavailability (2.63%) to be very low. Therefore, we reviewed the chemical, physical and biological transformation methods for the production on a large scale of G-Rg3 with various pharmacological effects. We also examined the influence of acid and heat treatment-induced potentials on for the preparation method of higher G-Rg3 content in ginseng and ginseng products. Futhermore, the microbial and enzymatic bio-conversion technologies could be more efficient in terms of high selectivity, efficiency and productivity. The present review discusses the available technologies for G-Rg3 production on a large scale using chemical and biological transformation.

Production of Ginsenoside-Rg3 Enriched Yeast Biomass Using Ginseng Steaming Effluent (수삼 증자 시 생성되는 유출액을 이용한 ginsenoside-Rg3 강화 효모 제조)

  • Kim, Na-Mi;Lee, Seong-Kye;Cho, Hae-Hyun;So, Seung-Ho;Jang, Dong-Pil;Han, Sung-Tai;Lee, Jong-Soo
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.183-188
    • /
    • 2009
  • To produce ginsenoside-Rg$_3$ enriched edible yeast, ginseng steaming effluent (GSE) was used for yeast cultivation in this study. Four kinds of edible yeasts were cultured in sterilized GSE (2% w/v, pH 6.5), without any nutrient, for 48 h at 30$^{\circ}C$, and their growth and ginsenoside compositions were determined. Among the yeasts, Saccharomyces cerevisiae showed the highest growth in the GSE medium. 267.1 mg of Saccharomyces cerevisiae biomass was produced from 1 g of GSE solid and ginsenoside-Rg$_3$ contents was determined with 0.033 mg. Saccharomyces cerevisiae also showed the best overall acceptability, with a herbal and fermentative flavor and a slightly bitter taste. From these data, we conclude that Saccharomyces cerevisiae is the excellent strain for production of ginsenoside-Rg$_3$ enriched edible yeast using GSE.

Synthesis of $^3H$-Labeled dammarane triterpene glycosides of Korean ginseng

  • Han, Byung-Hoon;Woo, Lin-Keun
    • Archives of Pharmacal Research
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 1978
  • A procedure of $^3H$-radio labeling synthesis for the dammarane triterpene glycosides of Korean ginseng was established by using the ginsenoside $Rg_1$ as starting material. The protons in $C-{11}$ and $C_{13}$ of the aglycone moiety of the glycoside were exchanged with tritium by keto-enol tautomerization of 12-keto-ginsenoside $Rg_1$ which was prepared by partial acetylation, Sarett oxidation and saponification, producing nona-acetate, nonaside $Rg_1$. The acety1-ketone and 12-keto-derivative of ginsenotritated ketone was reduced by metallic sodium and isoproponol to produce the end product $^3H$-ginsenoside $Rg_1$ with 3% radio-chemical recovery in one experiment.

  • PDF