• Title/Summary/Keyword: ginsenoside transformation

Search Result 59, Processing Time 0.036 seconds

New metabolites from the biotransformation of ginsenoside Rb1 by Paecilomyces bainier sp.229 and activities in inducing osteogenic differentiation by Wnt/β-catenin signaling activation

  • Zhou, Wei;Huang, Hai;Zhu, Haiyan;Zhou, Pei;Shi, Xunlong
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.199-207
    • /
    • 2018
  • Background: Ginseng is a well-known traditional Chinese medicine that has been widely used in a range of therapeutic and healthcare applications in East Asian countries. Microbial transformation is regarded as an effective and useful technology in modification of nature products for finding new chemical derivatives with potent bioactivities. In this study, three minor derivatives of ginsenoside compound K were isolated and the inducing effects in the Wingless-type MMTV integration site (Wnt) signaling pathway were also investigated. Methods: New compounds were purified from scale-up fermentation of ginsenoside Rb1 by Paecilomyces bainier sp. 229 through repeated silica gel column chromatography and high pressure liquid chromatography. Their structures were determined based on spectral data and X-ray diffraction. The inductive activities of these compounds on the Wnt signaling pathway were conducted on MC3T3-E1 cells by quantitative real-time polymerase chain reaction analysis. Results: The structures of a known 3-keto derivative and two new dehydrogenated metabolites were elucidated. The crystal structure of the 3-keto derivative was reported for the first time and its conformation was compared with that of ginsenoside compound K. The inductive effects of these compounds on osteogenic differentiation by activating the Wnt/b-catenin signaling pathway were explained for the first time. Conclusion: This study may provide a new insight into the metabolic pathway of ginsenoside by microbial transformation. In addition, the results might provide a reasonable explanation for the activity of ginseng in treating osteoporosis and supply good monomer ginsenoside resources for nutraceutical or pharmaceutical development.

Optimization for Preparation of Malic acid-catalyzed Ginsenoside Rg3 by Response Surface Methodology (반응 표면 분석법을 이용한 홍삼 사포닌으로부터의 사과산 활용 진세노사이드 Rg3 전환 최적화)

  • Ki Seong Kim;Junseong Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.375-383
    • /
    • 2023
  • Malic acid-catalyzed transformation has been developed to produce ginsenoside Rg3 which is increasingly in demand as a functional ingredient. The optimization of the conversion of red ginseng saponin (RGS) to ginsenoside Rg3 by acid catalyzed transformation was carried out using Box-Behnken design (BBD) based on Response Surface Analysis (RSM). The main independent variables were malic acid concentration, temperature, and reaction time. Conversion of ginsenoside Rg3 was performed according to BBD model and optimization conditions were analyzed. The concentration of the converted ginsenoside Rg3 ranged from 1.548 mg/L to 4.558 mg/L, and the highest production was obtained under the condition of reacting 1% malic acid, 50 ℃ and 9h. Consequently, The independent variables affecting the production of ginsenoside Rg3 were identified in the following order: malic acid concentration, reaction time and temperature. In addition, it was confirmed that the interaction between malic acid concentration and reaction time had a greater influence than the temperature.

Protective effect and mechanism of ginsenoside Rg2 on atherosclerosis

  • Qianqian Xue;Tao Yu;Zhibin Wang;Xiuxiu Fu;Xiaoxin Li;Lu Zou;Min Li;Jae Youl Cho;Yanyan Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.237-245
    • /
    • 2023
  • Background: Ginsenoside Rg2 (Rg2) has a variety of pharmacological activities and provides benefits during inflammation, cancer, and other diseases. However, there are no reports about the relationship between Rg2 and atherosclerosis. Methods: We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to detect the cell viability of Rg2 in vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs). The expression of inflammatory factors in HUVECs and the expression of phenotypic transformation-related marker in VSMCs were detected at mRNA levels. Western blot method was used to detect the expression of inflammation pathways and the expression of phenotypic transformation at the protein levels. The rat carotid balloon injury model was performed to explore the effect of Rg2 on inflammation and phenotypic transformation in vivo. Results: Rg2 decreased the expression of inflammatory factors induced by lipopolysaccharide in HUVECs-without affecting cell viability. These events depend on the blocking regulation of NF-κB and p-ERK signaling pathway. In VSMCs, Rg2 can inhibit the proliferation, migration, and phenotypic transformation of VSMCs induced by platelet derived growth factor-BB (PDGF-BB)-which may contribute to its anti-atherosclerotic role. In rats with carotid balloon injury, Rg2 can reduce intimal proliferation after injury, regulate the inflammatory pathway to reduce inflammatory response, and also suppress the phenotypic transformation of VSMCs. Conclusion: These results suggest that Rg2 can exert its anti-atherosclerotic effect at the cellular level and animal level, which provides a more sufficient basis for ginseng as a functional dietary regulator.

Pharmacokinetics of ginsenoside Rb1 and its metabolite compound K after oral administration of Korean Red Ginseng extract

  • Kim, Hyung-Ki
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.451-456
    • /
    • 2013
  • Compound K is a major metabolite of ginsenoside Rb1, which has various pharmacological activities in vivo and in vitro. However, previous studies have focused on the pharmacokinetics of a single metabolite or the parent compound and have not described the pharmacokinetics of both compounds in humans. To investigate the pharmacokinetics of ginsenoside Rb1 and compound K, we performed an open-label, single-oral dose pharmacokinetic study using Korean Red Ginseng extract. We enrolled 10 healthy Korean male volunteers in this study. Serial blood samples were collected during 36 h after Korean Red Ginseng extract administration to determine plasma concentrations of ginsenoside Rb1 and compound K. The mean maximum plasma concentration of compound K was $8.35{\pm}3.19$ ng/mL, which was significantly higher than that of ginsenoside Rb1 ($3.94{\pm}1.97$ ng/mL). The half-life of compound K was 7 times shorter than that of ginsenoside Rb1. These results suggest that the pharmacokinetics, especially absorption, of compound K are not influenced by the pharmacokinetics of its parent compound, except the time to reach the maximum plasma concentration The delayed absorption of compound K support the evidence that the intestinal microflora play an important role in the transformation of ginsenoside Rb1 to compound K.

Biotransformation of Ginsenoside Rb1 to Prosapogenins, Gypenoside XVII, Ginsenoside Rd, Ginsenoside F2, and Compound K by Leuconostoc mesenteroides DC102

  • Quan, Lin-Hu;Piao, Jin-Ying;Min, Jin-Woo;Kim, Ho-Bin;Kim, Sang-Rae;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.344-351
    • /
    • 2011
  • Ginsenoside $Rb_1$ is the main component in ginsenosides. It is a protopanaxadiol-type ginsenoside that has a dammarane-type triterpenoid as an aglycone. In this study, ginsenoside $Rb_1$ was transformed into gypenoside XVII, ginsenoside Rd, ginsenoside $F_2$ and compound K by glycosidase from Leuconostoc mesenteroides DC102. The optimum time for the conversion was about 72 h at a constant pH of 6.0 to 8.0 and the optimum temperature was about $30^{\circ}C$. Under optimal conditions, ginsenoside $Rb_1$ was decomposed and converted into compound K by 72 h post-reaction (99%). The enzymatic reaction was analyzed by highperformance liquid chromatography, suggesting the transformation pathway: ginsenoside $Rb_1$ ${\rightarrow}$ gypenoside XVII and ginsenoside Rd${\rightarrow}$ginsenoside $F_2{\rightarrow}$compound K.

The transformation of ginsenosides by acid catalysis in gastric pH

  • Han, Byung-Hoon;Park, Myung-Hwan;Han, Yong-Nam;Woo, Lin-Keun;Ushio-Sankawa;Shoji-Yahara;Osamu-Tanaka
    • Archives of Pharmacal Research
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 1981
  • The ginsenosides of Korean ginseng decomposed profoundly to produce artifact products of prosapogenin $A_{1}$, $A_{2}$ and $A_{3}$ from ginsenoside Rg$_{1}$, prosapogenin $C_{1}$, $C_{2}$ and $C_{3}$ from ginsenoside Re, and prosapogenin E$_{1}$, E$_{2}$ and E$_{3}$ from ginsenoside Rb$_{1}$ by the acid treatment under physiological condition such as 37.deg.C incubation in 0.1 N HCI. 2. The chemical structures of the artifact substances were determined by the analysis CMR and mass spectra of TMS derivatives as following; table omitted.

  • PDF

Enzymatic transformation of ginsenosides in Korean Red Ginseng (Panax ginseng Meyer) extract prepared by Spezyme and Optidex

  • Choi, Hyeon-Son;Kim, Sun Young;Park, Yooheon;Jung, Eun Young;Suh, Hyung Joo
    • Journal of Ginseng Research
    • /
    • v.38 no.4
    • /
    • pp.264-269
    • /
    • 2014
  • Background: In this study, we examined the effects of various enzymes on chemical conversions of ginsenosides in ginseng extract prepared by amylases. Methods: Rapidase, Econase CE, Viscozyme, Ultraflo L, and Cytolase PCL5 were used for secondary enzymatic hydrolysis after amylase treatment of ginseng extract, and ginsenoside contents, skin permeability, and chemical compositions including total sugar, acidic polysaccharide, and polyphenols were determined on the hydrolyzed ginseng extract. Results: Rapidase treatment significantly elevated total ginsenoside contents compared with the control (p < 0.05). In particular, deglycosylated ginsenosides including Rg3, which are known as bioactive compounds, were significantly increased after Rapidase treatment (p < 0.05). The Rapidase-treated group also increased the skin permeability of polyphenols compared with the control, showing the highest level of total sugar content among the enzyme treatment groups. Conclusion: This result showed that Rapidase induced the conversion of ginsenoside glycosides to aglycones. Meanwhile, Cytolase PCL5 and Econase treatments led to a significant increase of uronic acid (acidic polysaccharide) level. Taken together, our data showed that the treatments of enzymes including Rapidase are useful for the conversion and increase of ginsenosides in ginseng extracts or products.

Patterns of Soluble Protein, Reducing Sugar and Ginsenosides in Transformed Calli of Ginseng (Panax ginseng C.A. Meyer (형질전환 인삼 Callus의 단백질, 환원당 및 Ginsenoside의 양상)

  • Yang, Deok-Jun;Choe, Gwang-Tae;Yang, Deok-Deok
    • Journal of Ginseng Research
    • /
    • v.15 no.2
    • /
    • pp.124-130
    • /
    • 1991
  • This study was conducted to obtain basic information about the transformation of ginseng tissue, identification of opine compound and protein, and saponin production from ginseng callus transformed with Ti-plasmic of AW$.$obacterium tumefaiens C58. Ginseng crown gall callus induced by pTiC58 could be continuously cultured on the Phytohormone-free medium. The transformation was reconfirmed by the detection and identification of opine compound, from the gall callus. The transformed ginseng callus contained higher amounts of protein than normal callus and the protein pattern of transformed callus was quite different from that of normal callus. The xylose which is not detected in the normal callus and ginseng root was identified in gall callus. The saponin contents of gall callus of ginseng were three times higher than that of normal callus, and ginsenoside composition of the transformed callus was similar to that of the cultivated ginseng root, but quite different from that of normal callus.

  • PDF

Screening for Ginseng-Fermenting Microorganisms Capable of Biotransforming Ginsenosides (Ginsenoside 전환이 가능한 인삼 발효 미생물의 선별)

  • Kim, Hee-Gyu;Kim, Ki-Yeon;Cha, Chang-Jun
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.142-146
    • /
    • 2007
  • Panax ginseng has been drawing world-wide attention since it was used for medicinal purposes and its effects was discovered in scientific manners. However, it is necessary to develope new ginseng products as functional foods to compete with western ginseng. Fermented ginseng could be an excellent solution, where useful probiotics are provided and ginsenosides are specifically transformed to functional forms. In this study, we investigated the growth and ginsenoside biotransformation by 21 Bacillus strains isolated from Chongkukjang and 12 lactic acid bacteria. 2.5% (w/v) and 1% (w/v) of ginseng were used in culture media containing only ginseng powder as a sole nutrient source, and their biotransformation abilities were tested after the growths were checked. All used Bacillus strains and lactic acid bacteria were able to grow well in ginseng powder media at higher levels than $10^{7}\;CFU/ml$. Most of Bacillus strains displayed ginsenoside transformation in a strain-specific manner. Therefore, the results of this study demonstrated that the strains tested in this study could be used as potential starters for the ginseng fermentation.