• 제목/요약/키워드: ginsenoside transformation

검색결과 60건 처리시간 0.023초

Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3

  • Chang, Kyung Hoon;Jo, Mi Na;Kim, Kee-Tae;Paik, Hyun-Dong
    • Journal of Ginseng Research
    • /
    • 제38권1호
    • /
    • pp.47-51
    • /
    • 2014
  • The transformation of ginsenoside Rb1 into a specific minor ginsenoside using Aspergillus niger KCCM 11239, as well as the identification of the transformed products and the pathway via thin layer chromatography and high performance liquid chromatography were evaluated to develop a new biologically active material. The conversion of ginsenoside Rb1 generated Rd, Rg3, Rh2, and compound K although the reaction rates were low due to the low concentration. In enzymatic conversion, all of the ginsenoside Rb1 was converted to ginsenoside Rd and ginsenoside Rg3 after 24 h of incubation. The crude enzyme (b-glucosidase) from A. niger KCCM 11239 hydrolyzed the ${\beta}$-($1{\rightarrow}6$)-glucosidic linkage at the C-20 of ginsenoside Rb1 to generate ginsenoside Rd and ginsenoside Rg3. Our experimental demonstration showing that A. niger KCCM 11239 produces the ginsenoside-hydrolyzing b-glucosidase reflects the feasibility of developing a specific bioconversion process to obtain active minor ginsenosides.

Transformation of Ginseng Saponins to Ginsenoside $Rh_2$ by Acids and Human Intestinal Bacteria Activities of Their Transformants

  • Bae, Eun-Ah;Han, Myung-Joo;Kim, Eun-Jin;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • 제27권1호
    • /
    • pp.61-67
    • /
    • 2004
  • When ginseng water extract was incubated at $60^{\circ}C$ in acidic conditions, its protopanaxadiol ginsenosides were transformed to ginsenoside $Rg_3$ and ${\Delta}^{20}$-ginsenoside $Rg_3$. However, protopanaxadiol glycoside ginsenosides $Rb_1, Rb_2$ and Rc isolated from ginseng were mostly not transformed to ginsenoside $Rg_3$ by the incubation in neutral condition. The transformation of these ginsenosides to ginsenoside $Rg_3$ and ${\Delta}^{20}$-ginsenoside $Rg_3$ was increased by increasing incubation temperature and time in acidic condition: the optimal incubation time and temperature for this transformation was 5 h and $60^{\circ}C$ resepectively. The transformed ginsenoside $Rg_3$ and ${\Delta}^{20}$-ginsenoside $Rg_3$ were metabolized to ginsenoside $Rh_2$ and $\Delta^{20}$--ginsenoside $Rh_2$, respectively, by human fecal microflora. Among the bacteria isolated from human fecal microflora, Bacteroides sp., and Bifidobacterium sp. and Fusobacterium sp. potently transformed ginsenoside $Rg_3$ to ginsenoside $Rh_2$. Acid-treated ginseng (AG) extract, fermented AG extract, ginsenoside $Rh_2$ and protopanaxadiol showed potent cytotoxicity against tumor cell lines. AG extract, fermented AG extract and protopanaxadiol potently inhibited the growth of Helicobacter pylori.

Leuconostoc fallax LH3이 생산하는 효소에 의한 Ginsenoside Rd의 Ginsenoside F2로의 전환 (Transformation of Ginsenoside Rd to Ginsenoside F2 by Enzymes of Leuconostoc fallax LH3)

  • 전림호;성락금;나주련;김호빈;박민주;김세화;김명겸;양덕춘
    • 한국약용작물학회지
    • /
    • 제16권3호
    • /
    • pp.155-160
    • /
    • 2008
  • Ginsenosides have been regarded as the principal components, responsible for the pharmacological and biological activities of ginseng. Absorption of major ginsenosides at the gastrointestinal tract was extremely low, when ginseng taken orally. In order to improve the absorption and bioavailability, transformation of major ginsenosides into more active and valuable minor ginsenoside is much required. In this present study, We isolated a lactic acid bacteria Leuconostoc fallax LH3 from the Korean fermented food Kimchi, which have higher ${\beta}$-glucosidase activity. Using the ethanol precipitated curd enzyme of Leuconostoc fallax LH3, we investigated the biotransformation of ginsenoside Rd at different experimental condition to increase transformation. The maximum convertion was supported at 30 $^{\circ}C$ and decreased when temperatures increased. In order to optimize the effect of pH, the curd enzyme was mixed 20 mM sodium phosphate buffer (pH 3.5 to pH 8.0). Ginsenoside Rd was almost hydrolyzed between pH 7.0 and pH 9.0, but not hydrolyzed above pH 10.0. Ginsenoside Rd was hydrolyzed after 24 hrs incubation, but whereas the ginsenoside F2 was appeared from 36 hrs, and all ginsenoside Rd was transformed to F2 after the 60 hrs incubation. Based on this study, the curd enzyme of Leuconostoc fallax LH3 transformed the ginsenoside Rd at the 30$^{\circ}C$ and the pH optimum of 7.0 to 9.0 after the 60 hrs incubation time.

Ginsenoside Rg3의 함량증가를 위한 변환 기술 (Transformation Techniques for the Large Scale Production of Ginsenoside Rg3)

  • 남기열;최재을;박종대
    • 한국약용작물학회지
    • /
    • 제21권5호
    • /
    • pp.401-414
    • /
    • 2013
  • Ginsenoside Rg3 (G-Rg3) contained only in red ginseng has been found to show various pharmacological effects such as an anticancer, antiangiogenetic, antimetastastic, liver protective, neuroprotective immunomodulating, vasorelaxative, antidiabetic, insulin secretion promoting and antioxidant activities. It is well known that G-Rg3 could be divided into 20(R)-Rg3 and 20(S)-Rg3 according to the hydroxyl group attached to C-20 of aglycone, whose structural characteristics show different pharmacological activities. It has been reported that G-Rg3 is metabolized to G-Rh2 and protopanaxadiol by the conditions of the gastric acid or intestinal bacteria, thereby these metabolites could be absorbed, suggesting its absolute bioavailability (2.63%) to be very low. Therefore, we reviewed the chemical, physical and biological transformation methods for the production on a large scale of G-Rg3 with various pharmacological effects. We also examined the influence of acid and heat treatment-induced potentials on for the preparation method of higher G-Rg3 content in ginseng and ginseng products. Futhermore, the microbial and enzymatic bio-conversion technologies could be more efficient in terms of high selectivity, efficiency and productivity. The present review discusses the available technologies for G-Rg3 production on a large scale using chemical and biological transformation.

Remarkable impact of steam temperature on ginsenosides transformation from fresh ginseng to red ginseng

  • Xu, Xin-Fang;Gao, Yan;Xu, Shu-Ya;Liu, Huan;Xue, Xue;Zhang, Ying;Zhang, Hui;Liu, Meng-Nan;Xiong, Hui;Lin, Rui-Chao;Li, Xiang-Ri
    • Journal of Ginseng Research
    • /
    • 제42권3호
    • /
    • pp.277-287
    • /
    • 2018
  • Background: Temperature is an essential condition in red ginseng processing. The pharmacological activities of red ginseng under different steam temperatures are significantly different. Methods: In this study, an ultrahigh-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry was developed to distinguish the red ginseng products that were steamed at high and low temperatures. Multivariate statistical analyses such as principal component analysis and supervised orthogonal partial least squared discrimination analysis were used to determine the influential components of the different samples. Results: The results showed that different steamed red ginseng samples can be identified, and the characteristic components were 20-gluco-ginsenoside Rf, ginsenoside Re, ginsenoside Rg1, and malonyl-ginsenoside Rb1 in red ginseng steamed at low temperature. Meanwhile, the characteristic components in red ginseng steamed at high temperature were 20R-ginsenoside Rs3 and ginsenoside Rs4. Polar ginsenosides were abundant in red ginseng steamed at low temperature, whereas higher levels of less polar ginsenosides were detected in red ginseng steamed at high temperature. Conclusion: This study makes the first time that differences between red ginseng steamed under different temperatures and their ginsenosides transformation have been observed systematically at the chemistry level. The results suggested that the identified chemical markers can be used to illustrate the transformation of ginsenosides in red ginseng processing.

Evaluation of ginsenoside bioconversion of lactic acid bacteria isolated from kimchi

  • Park, Boyeon;Hwang, Hyelyeon;Lee, Jina;Sohn, Sung-Oh;Lee, Se Hee;Jung, Min Young;Lim, Hyeong In;Park, Hae Woong;Lee, Jong-Hee
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.524-530
    • /
    • 2017
  • Background: Panax ginseng is a physiologically active plant widely used in traditional medicine that is characterized by the presence of ginsenosides. Rb1, a major ginsenoside, is used as the starting material for producing ginsenoside derivatives with enhanced pharmaceutical potentials through chemical, enzymatic, or microbial transformation. Methods: To investigate the bioconversion of ginsenoside Rb1, we prepared kimchi originated bacterial strains Leuconostoc mensenteroides WiKim19, Pediococcus pentosaceus WiKim20, Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49 and analyzed bioconversion products using LC-MS/MS mass spectrometer. Results: L. mesenteroides WiKim19 and Pediococcus pentosaceus WiKim20 converted ginsenoside Rb1 into the ginsenoside Rg3 approximately five times more than Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49. L mesenteroides WIKim19 showed positive correlation with b-glucosidase activity and higher transformation ability of ginsenoside Rb1 into Rg3 than the other strains whereas, P. pentosaceus WiKim20 showed an elevated production of Rb3 even with lack of b-glucosidase activity but have the highest acidity among the five lactic acid bacteria (LAB). Conclusion: Ginsenoside Rg5 concentration of five LABs have ranged from ${\sim}2.6{\mu}g/mL$ to $6.5{\mu}g/mL$ and increased in accordance with the incubation periods. Our results indicate that the enzymatic activity along with acidic condition contribute to the production of minor ginsenoside from lactic acid bacteria.

Enzymatic Transformation of Ginsenoside Rb1 by Lactobacillus pentosus Strain 6105 from Kimchi

  • Kim, Se-Hwa;Min, Jin-Woo;Quan, Lin-Hu;Lee, Sung-Young;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제36권3호
    • /
    • pp.291-297
    • /
    • 2012
  • Ginsenoside (ginseng saponin), the principal component of ginseng, is responsible for the pharmacological and biological activities of ginseng. We isolated lactic acid bacteria from Kimchi using esculin agar, to produce ${\beta}$-glucosidase. We focused on the bio-transformation of ginsenoside. Phylogenetic analysis was performed by comparing the 16S rRNA sequences. We identified the strain as Lactobacillus (strain 6105). In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside Rb1 to catalyse the reaction. A carbon substrate, such as cellobiose, lactose, and sucrose, resulted in the highest yields of ${\beta}$-glucosidase activity. Biotransformations of ginsenoside Rb1 were analyzed using TLC and HPLC. Our results confirmed that the microbial enzyme of strain 6105 significantly transformed ginsenoside as follows: Rb1${\rightarrow}$gypenoside XVII, Rd${\rightarrow}$F2 into compound K. Our results indicate that this is the best possible way to obtain specific ginsenosides using microbial enzymes from 6105 culture.

Microbial conversion of major ginsenosides in ginseng total saponins by Platycodon grandiflorum endophytes

  • Cui, Lei;Wu, Song-quan;Zhao, Cheng-ai;Yin, Cheng-ri
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.366-374
    • /
    • 2016
  • Background: In this study, we screened and identified an endophyte JG09 having strong biocatalytic activity for ginsenosides from Platycodon grandiflorum, converted ginseng total saponins and ginsenoside monomers, determined the source of minor ginsenosides and the transformation pathways, and calculated the maximum production of minor ginsenosides for the conversion of ginsenoside Rb1 to assess the transformation activity of endophyte JG09. Methods: The transformation of ginseng total saponins and ginsenoside monomers Rb1, Rb2, Rc, Rd, Rg1 into minor ginsenosides F2, C-K and Rh1 using endophyte JG09 isolated by an organizational separation method and Esculin-R2A agar assay, as well as the identification of transformed products via TLC and HPLC, were evaluated. Endophyte JG09 was identified through DNA sequencing and phylogenetic analysis. Results: A total of 32 ${\beta}$-glucosidase-producing endophytes were screened out among the isolated 69 endophytes from P. grandiflorum. An endophyte bacteria JG09 identified as Luteibacter sp. effectively converted protopanaxadiol-type ginsenosides Rb1, Rb2, Rc, Rd into minor ginsenosides F2 and C-K, and converted protopanaxatriol-type ginsenoside Rg1 into minor ginsenoside Rh1. The transformation pathways of major ginsenosides by endophyte JG09 were as follows: $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}C-K$; $Rb2{\rightarrow}C-O{\rightarrow}C-Y{\rightarrow}C-K$; $Rc{\rightarrow}C-Mc1{\rightarrow}C-Mc{\rightarrow}C-K$; $Rg1{\rightarrow}Rh1$. The maximum production rate of ginsenosides F2 and C-K reached 94.53% and 66.34%, respectively. Conclusion: This is the first report about conversion of major ginsenosides into minor ginsenosides by fermentation with P. grandiflorum endophytes. The results of the study indicate endophyte JG09 would be a potential microbial source for obtaining minor ginsenosides.

Methanol-involved heterogeneous transformation of ginsenoside Rb1 to rare ginsenosides using heteropolyacids embedded in mesoporous silica with HPLC-MS investigation

  • Mengya Zhao;Yusheng Xiao;Yanyan Chang;Lu Tian;Yujiang Zhou;Shuying Liu;Huanxi Zhao;Yang Xiu
    • Journal of Ginseng Research
    • /
    • 제48권4호
    • /
    • pp.366-372
    • /
    • 2024
  • Background: The biological activity and pharmacological effects of rare ginsenosides have been proven to be superior to those of the major ginsenosides, but they are rarely found in ginseng. Methods: Ginsenoside Rb1 was chemically transformed with the involvement of methanol molecules by a synthesized heterogeneous catalyst 12-HPW@MeSi, which was obtained by the immobilization of 12-phosphotungstic acid on a mesoporous silica framework. High-performance liquid chromatography coupled with mass spectrometry was used to identify the transformation products. Results: A total of 18 transformation products were obtained and identified. Methanol was found to be involved in the formation of 8 products formed by the addition of methanol molecules to the C-24 (25), C-20 (21) or C-20 (22) double bonds of the aglycone. The transformation pathways of ginsenoside Rb1 involved deglycosylation, addition, elimination, cycloaddition, and epimerization reactions. These pathways could be elucidated in terms of the stability of the generated carbenium ion. In addition, 12-HPW@MeSi was able to maintain a 60.5% conversion rate of Rb1 after 5 cycles. Conclusion: Tandem and high-resolution mass spectrometry analysis allowed rapid and accurate identification of the transformation products through the characteristic fragment ions and neutral loss. Rare ginsenosides with methoxyl groups grafted at the C-25 and C-20 positions were obtained for the first time by chemical transformation using the composite catalyst 12-HPW@MeSi, which also enabled cyclic heterogeneous transformation and facile centrifugal separation of ginsenosides. This work provides an efficient and recyclable strategy for the preparation of rare ginsenosides with the involvement of organic molecules.

Biotransformation of Ginseng Extract to Cytotoxic Compound K and Ginsenoside $Rh_2$ by Human Intestinal Bacteria

  • Bae, Eun-Ah;Choo, Min-Kyung;Lee, Young-Churl;Kim, Dong-Hyun
    • Natural Product Sciences
    • /
    • 제10권6호
    • /
    • pp.347-352
    • /
    • 2004
  • When saponin extracts of dried ginseng and red ginseng were anaerobically incubated with human intestinal microflora, these extracts were metabolized to compound K and ginsenoside $Rh_2$, respectively. However, when these extracts were incubated with commercial lactic acid bacteria, these did not metabolize these ginsenosides to compound K or ginsenoside $Rh_2$. Among some intestinal bacteria isolated from human feces, Bacteroides C-35 and C-36 transformed these saponin extracts to compound K and ginsenoside $Rh_2$, respectively. These bacteria also transformed water extracts of dried ginseng and red ginseng to compound K and ginsenoside $Rh_2$, respectively, similarly with that of the saponin extracts. Among transformed ginsenosides, compound K and 20(S)-ginsenoside $Rh_2$ exhibited the most potent cyotoxicity against tumor cells.