• Title/Summary/Keyword: ginsenoside Rh4

Search Result 123, Processing Time 0.033 seconds

Development of Fermentation Process of Ginseng Leaf Extraction Probiotic Strain and Characterization of Product Quality (프로바이오틱 균주에 의한 인삼 잎 추출물 발효공정 확립 및 생성물의 품질 특성분석)

  • Hur, Sang-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1213-1223
    • /
    • 2018
  • This study was carried out to investigate extraction efficiency by microwave for extraction of pesticide residues and the bioconversion of ginsenosides of ginseng leaf by using various lactic acid bacteria in order to promote the utilization of ginseng leaf. The hexane extraction by microwave of tolclofos-methyl and azoxystrobin in ginseng leaf was efficient. The optimal condition for extraction of tolclofos-methyl and azoxystrobin in ginseng leaf by microwave was 50 to 95 watts of power supply, 3 minutes of extraction.The gisenosides Rg1 and Rb1 contents have decreased, while the Rh1, Rg3, Rk1 and Rh2 have increased due to fermentation. The ginsenosides Rg3 of the fermented ginseng leaf has increased and the contents were $70.62{\sim}77.61{\mu}g/g$(control $2.77{\mu}g/g$). The total phenolic acid content and electron donating ability of the ginseng leaf have totally decreased after 7 days of fermentation. The total phenolic acid contents of the fermented ginseng leaf with various lactic acid bacteria did not show any tendency as different strains.

Bioconversion of Ginsenosides from Red Ginseng Extract Using Candida allociferrii JNO301 Isolated from Meju

  • Lee, Sulhee;Lee, Yong-Hun;Park, Jung-Min;Bai, Dong-Hoon;Jang, Jae Kweon;Park, Young-Seo
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.368-375
    • /
    • 2014
  • Red ginseng (Panax ginseng), a Korean traditional medicinal plant, contains a variety of ginsenosides as major functional components. It is necessary to remove sugar moieties from the major ginsenosides, which have a lower absorption rate into the intestine, to obtain the aglycone form. To screen for microorganisms showing bioconversion activity for ginsenosides from red ginseng, 50 yeast strains were isolated from Korean traditional meju (a starter culture made with soybean and wheat flour for the fermentation of soybean paste). Twenty strains in which a black zone formed around the colony on esculin-yeast malt agar plates were screened first, and among them 5 strains having high ${\beta}$-glucosidase activity on p-nitrophenyl-${\beta}$-D-glucopyranoside as a substrate were then selected. Strain JNO301 was finally chosen as a bioconverting strain in this study on the basis of its high bioconversion activity for red ginseng extract as determined by thin-layer chromatography (TLC) analysis. The selected bioconversion strain was identified as Candida allociferrii JNO301 based on the nucleotide sequence analysis of the 18S rRNA gene. The optimum temperature and pH for the cell growth were $20{\sim}30^{\circ}C$ and pH 5~8, respectively. TLC analysis confirmed that C. allociferrii JNO301 converted ginsenoside Rb1 into Rd and then into F2, Rb2 into compound O, Rc into compound Mc1, and Rf into Rh1. Quantitative analysis using high-performance liquid chromatography showed that bioconversion of red ginseng extract resulted in an increase of 2.73, 3.32, 33.87, 16, and 5.48 fold in the concentration of Rd, F2, compound O, compound Mc1, and Rh1, respectively.

Processed Vietnamese ginseng: Preliminary results in chemistry and biological activity

  • Le, Thi Hong Van;Lee, Seo Young;Kim, Tae Ryong;Kim, Jae Young;Kwon, Sung Won;Nguyen, Ngoc Khoi;Park, Jeong Hill;Nguyen, Minh Duc
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.154-159
    • /
    • 2014
  • Background: This study was carried out to investigate the effect of the steaming process on chemical constituents, free radical scavenging activity, and antiproliferative effect of Vietnamese ginseng. Methods: Samples of powdered Vietnamese ginseng were steamed at $120^{\circ}C$ for various times and thei extracts were subjected to chemical and biological studies. Results: Upon steaming, contents of polar ginsenosides, such as Rb1, Rc, Rd, Re, and Rg1, were rapidly decreased, whereas less polar ginsenosides such as Rg3, Rg5, Rk1, Rk3, and Rh4 were increased as reported previously. However, ocotillol type saponins, which have no glycosyl moiety at the C-20 position, were relatively stable on steaming. The radical scavenging activity was increased continuously up to 20 h of steaming. Similarly, the antiproliferative activity against A549 lung cancer cells was also increased. Conclusion: It seems that the antiproliferative activity is closely related to the contents of ginsenoside Rg3, Rg5, and Rk1.

Identification of Dammarane-type Triterpenoid Saponins from the Root of Panax ginseng

  • Lee, Dong Gu;Lee, Jaemin;Yang, Sanghoon;Kim, Kyung-Tack;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.111-121
    • /
    • 2015
  • The root of Panax ginseng, is a Korea traditional medicine, which is used in both raw and processed forms due to their different pharmacological activities. As part of a continued chemical investigation of ginseng, the focus of this research is on the isolation and identification of compounds from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, semi-preparative-high performance liquid chromatography, Fast atom bombardment mass spectrometric, and nuclear magnetic resonance. Dammarane-type triterpenoid saponins were isolated from Panax ginseng root by open column chromatography, medium pressure liquid chromatography, and semi-preparative-high performance liquid chromatography. Their structures were identified as protopanaxadiol ginsenosides [gypenoside-V (1), ginsenosides-Rb1 (2), -Rb2 (3), -Rb3 (4), -Rc (5), and -Rd (6)], protopanaxatriol ginsenosides [20(S)-notoginsenoside-R2 (7), notoginsenoside-Rt (8), 20(S)-O-glucoginsenoside-Rf (9), 6-O-[$\alpha$-L-rhamnopyranosyl(1$\rightarrow$2-$\beta$-D-glucopyranosyl]-20-O-$\beta$-D-glucopyranosyl-$3\beta$,$12\beta$, 20(S)-dihydroxy-dammar-25-en-24-one (10), majoroside-F6 (11), pseudoginsenoside-Rt3 (12), ginsenosides-Re (13), -Re5 (14), -Rf (15), -Rg1 (16), -Rg2 (17), and -Rh1 (18), and vinaginsenoside-R15 (19)], and oleanene ginsenosides [calenduloside-B (20) and ginsenoside-Ro (21)] through the interpretation of spectroscopic analysis. The configuration of the sugar linkages in each saponin was established on the basic of chemical and spectroscopic data. Among them, compounds 1, 8, 10, 11, 12, 19, and 20 were isolated for the first time from P. ginseng root.

Comparative Study of White and Steamed Black Panax ginseng, P. quinquefolium, and P. notoginseng on Cholinesterase Inhibitory and Antioxidative Activity

  • Lee, Mi-Ra;Yun, Beom-Sik;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.93-101
    • /
    • 2012
  • This study evaluated the anti-cholinesterases (ChEs) and antioxidant activities of white ginseng (WG) and black ginseng (BG) roots of Panax ginseng (PG), P. quinquefolium (PQ), and P. notoginseng (PN). Ginsenosides $Rg_1$, Re, Rf, $Rb_1$, Rc, $Rb_2$, and Rd were found in white PG, whereas Rf was not found in white PQ and Rf, Rc, and $Rb_2$ were not detected in white PN. The major ginsenoside content in steamed BG including $RK_3$, $Rh_4$, and 20(S)/(R)-$Rg_3$ was equivalent to approximately 70% of the total ginsenoside content. The WG and BG inhibited acetylcholinesteras (AChE) and butyrylcholinesterase (BChE) in a dose dependent manner. The efficacy of BG roots of PG, PQ, and PN on AChE and BChE inhibition was greater than that of the respective WG roots. The total phenolic contents and 2, 2-diphenyl-1-picryl-hydrazyl (DPPH) scavenging activity were increased by heat treatment. Among the three WG and BG, white PG and steamed black PQ have significantly higher contents of phenolic compounds. The best results for the DPPH scavenging activity were obtained with the WG and BG from PG. These results demonstrate that the steamed BG roots of the three studied ginseng species have both high ChEs inhibition capacity and antioxidant activity.

Quality Changes in Red Ginseng Extract during High Temperature Storage (열처리(熱處理)에 의한 홍삼(紅蔘)엑기스의 성분변화(成分變化))

  • Choi, Jin-Ho;Kim, Woo-Jung;Yang, Jae-Won;Sung, Hyun-Soon;Hong, Soon-Keun
    • Applied Biological Chemistry
    • /
    • v.24 no.1
    • /
    • pp.50-58
    • /
    • 1981
  • The influence of high temperature storage on the chemical composition and color intensity of the concentrated red ginseng extract(RGE) was investigated. The concentrated RGE was prepared by extraction of red ginseng tails with water and concentrated under reduced pressure. Changes in free sugars, saponin patterns and brown color intensity were measured during 96 hours of heat treatment at various temperature. A decrease in the contents of glucose, fructose and sucrose was resulted as the brown color intensity increased during the storage. The sugar contents and color intensity showed rapid initial change followed by slowing down at higher temperature. A significant relationship was found between sugar content and browning rate. The saponin pattern measured by high performance liquid chromatography, particularly in the region of protopanaxtriol, was also affected significantly. The peak heights of ginsenoside -Re and $-Rg_1$ were decreased while those of ginsenoside $-Rg_2$ and -Rh group were increased.

  • PDF

Comparison of ginsenoside contents and antioxidant activity according to the size of ginseng sprout has produced in a plant factory (식물공장에서 생산된 새싹인삼의 크기에 따른 진세노사이드 함량 및 항산화 활성 비교)

  • Hwang, Seung Ha;Kim, Su Cheol;Seong, Jin A;Lee, Hee Yul;Cho, Du Yong;Kim, Min Ju;Jung, Jea Gack;Jeong, Eun Hye;Son, Ki-Ho;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.253-261
    • /
    • 2021
  • In this study, the ginseng sprout has produced through smart farm was classified according to its size and divided into above-ground (AG) and below-ground (BG) parts to compare ginsenoside contents and antioxidant activity. In the case of the AG part, the total phenolic contents were the highest at 5.16 mg/g in medium (M) size and the lowest at 2.23 mg/g in largest (L) size. The BG part also showed the highest content in the M size, but there was no significant difference. Also, the total flavonoid contents were also high in the M size in both the AG (5.16 mg/g) and BG (1.28 mg/g) parts. The major ginsenosides in the AG part were Re (20.33-24.15 mg/g) > Rd (11.36-27.42 mg/g) > Rg1 (4.48-5.54 mg/g) and the main ginsenosides in the BG part were Rb1 (5.09-8.61 mg/g) > Re (4.48-5.54 mg/g) > Rc (3.11-4.11 mg/g) in orders. In the case of M size, Re and Rd were approximately 4- and 19-folds higher at 24.15 mg/g and at 27.42 mg/g in the AG part and 5.20 mg/g and 1.43 mg in the BG part, respectively. In addition, F3 and Rh1 were detected in the AG part, but not in the BG part. 2,2-diphenyl-1-picrylhydrazyl (74.95%), 2,4,6-azino-bis (3-ethylbenzothiazoline-6-sulphnoic acid) diammonium salt (94.47%), and hydroxyl (70.39%) radical scavenging activities and FRAP (2.169) assay were the highest in M size than other sizes.

Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways

  • Lee, Ju Hee;Min, Dong Suk;Lee, Chan Woo;Song, Kwang Ho;Kim, Yeong Shik;Kim, Hyun Pyo
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.476-484
    • /
    • 2018
  • Background: Korean Red Ginseng (steamed and dried white ginseng, Panax ginseng Meyer) is well known for enhancing vital energy and immune capacity and for inhibiting cancer cell growth. Some clinical studies also demonstrated a therapeutic potential of ginseng extract for treating lung inflammatory disorders. This study was conducted to establish the therapeutic potential of ginseng saponins on the lung inflammatory response. Methods: From Korean Red Ginseng, 11 ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, and Rh2) were isolated. Their inhibitory potential and action mechanism were evaluated using a mouse model of lung inflammation, acute lung injury induced by intranasal lipopolysaccharide administration. Their anti-inflammatory activities were also examined in lung epithelial cell line (A549) and alveolar macrophage (MH-S). Results: All ginsenosides orally administered at 20 mg/kg showed 11.5-51.6% reduction of total cell numbers in bronchoalveolar lavage fluid (BALF). Among the ginsenosides, Rc, Re, Rg1, and Rh2 exhibited significant inhibitory action by reducing total cell numbers in the BALF by 34.1-51.6% (n = 5). Particularly, Re showed strong and comparable inhibitory potency with that of dexamethasone, as judged by the number of infiltrated cells and histological observations. Re treatment clearly inhibited the activation of mitogen-activated protein kinases, nuclear factor-${\kappa}B$, and the c-Fos component in the lung tissue (n = 3). Conclusion: Certain ginsenosides inhibit lung inflammatory responses by interrupting these signaling molecules and they are potential therapeutics for inflammatory lung diseases.

Studies on Stability for the Quality of Ginseng Products - 1. Quality Characteristics of Freeze and Spray Dried Red Ginseng Extract Powders - (인삼제품(人蔘製品)의 품질안정성(品質安定性)에 관한 연구(硏究) - 1. 동결(凍結) 및 분무정분(噴霧精粉)의 품질특성(品質特性) -)

  • Choi, Jin-Ho;Byun, Dae-Seok;Park, Kil-Dong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.1
    • /
    • pp.57-63
    • /
    • 1984
  • This study was designed to compare the quality characteristics of freeze and spray dried red ginseng extract powders(RGEPs) by drying methods, which have been required to maintain the stability for the quality. Chemical compositions, major ginsenoside contents and color intensities of these Products were compared by drying conditions. The moisture absorption rates and optical densities also were compared during storage under maltreatment conditions of a various relative humidities (75, 86and 92 RH) and two different temperatures (37 and $50^{\circ}C$). It was found that decreases of total major ginsenosides contents in freeze and spray dried RGEPs were 5.4 % to 6.7 % during storage for 6 months at $37^{\circ}C$, 75 % RH. When these products packaged with inner seal of Al-foil laminate paper (Al-foil; 9 ${\mu}m$) were stored for 6 months at $37^{\circ}C$, 75 % RH. the moisture absorption rates of freeze and spray dried RGEPs were ranged 42 % to 82 %, 8 % to 16 %, respectively. In storage for 6 months at $37^{\circ}C$, 86 % RH, spray dried RGEP was higher in brown pigment($400{\sim}490nm$) than freeze dried RGEP while freeze dried was higher in pyrazine (278 nm), HMF and furfural (285 nm) than spray dried RGEP. It was found that RGEPs showed a strong anti-oxidative activity by electron donating ability to DPPPH, but there was no significant difference between freeze and spray dried RGEPs.

  • PDF

Review of Anti-Leukemia Effects from Medicinal Plants (항 백혈병작용에 관련된 천연물의 자료조사)

  • Pae Hyun Ock;Lim Chang Kyung;Jang Seon Il;Han Dong Min;An Won Gun;Yoon Yoo Sik;Chon Byung Hun;Kim Won Sin;Yun Young Gab
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.605-610
    • /
    • 2003
  • According to the Leukemia and Lymphoma Society, leukemia is a malignant disease (cancer) that originates in a cell in the marrow. It is characterized by the uncontrolled growth of developing marrow cells. There are two major classifications of leukemia: myelogenous or lymphocytic, which can each be acute or chronic. The terms myelogenous or lymphocytic denote the cell type involved. Thus, four major types of leukemia are: acute or chronic myelogenous leukemia and acute or chronic lymphocytic leukemia. Leukemia, lymphoma and myeloma are considered to be related cancers because they involve the uncontrolled growth of cells with similar functions and origins. The diseases result from an acquired (not inherited) genetic injury to the DNA of a single cell, which becomes abnormal (malignant) and multiplies continuously. In the United States, about 2,000 children and 27,000 adults are diagnosed each year with leukemia. Treatment for cancer may include one or more of the following: chemotherapy, radiation therapy, biological therapy, surgery and bone marrow transplantation. The most effective treatment for leukemia is chemotherapy, which may involve one or a combination of anticancer drugs that destroy cancer cells. Specific types of leukemia are sometimes treated with radiation therapy or biological therapy. Common side effects of most chemotherapy drugs include hair loss, nausea and vomiting, decreased blood counts and infections. Each type of leukemia is sensitive to different combinations of chemotherapy. Medications and length of treatment vary from person to person. Treatment time is usually from one to two years. During this time, your care is managed on an outpatient basis at M. D. Anderson Cancer Center or through your local doctor. Once your protocol is determined, you will receive more specific information about the drug(s) that Will be used to treat your leukemia. There are many factors that will determine the course of treatment, including age, general health, the specific type of leukemia, and also whether there has been previous treatment. there is considerable interest among basic and clinical researchers in novel drugs with activity against leukemia. the vast history of experience of traditional oriental medicine with medicinal plants may facilitate the identification of novel anti leukemic compounds. In the present investigation, we studied 31 kinds of anti leukemic medicinal plants, which its pharmacological action was already reported through many experimental articles and oriental medical book: 『pharmacological action and application of anticancer traditional chinese medicine』 In summary: Used leukemia cellline are HL60, HL-60, Jurkat, Molt-4 of human, and P388, L-1210, L615, L-210, EL-4 of mouse. 31 kinds of anti leukemic medicinal plants are Panax ginseng C.A Mey; Polygonum cuspidatum Sieb. et Zucc; Daphne genkwa Sieb. et Zucc; Aloe ferox Mill; Phorboc diester; Tripterygium wilfordii Hook .f.; Lycoris radiata (L Her)Herb; Atractylodes macrocephala Koidz; Lilium brownii F.E. Brown Var; Paeonia suffruticosa Andr.; Angelica sinensis (Oliv.) Diels; Asparagus cochinensis (Lour. )Merr; Isatis tinctoria L.; Leonurus heterophyllus Sweet; Phytolacca acinosa Roxb.; Trichosanthes kirilowii Maxim; Dioscorea opposita Thumb; Schisandra chinensis (Rurcz. )Baill.; Auium Sativum L; Isatis tinctoria, L; Ligustisum Chvanxiong Hort; Glycyrrhiza uralensis Fisch; Euphorbia Kansui Liou; Polygala tenuifolia Willd; Evodia rutaecarpa (Juss.) Benth; Chelidonium majus L; Rumax madaeo Mak; Sophora Subprostmousea Chunet T.ehen; Strychnos mux-vomical; Acanthopanax senticosus (Rupr.et Maxim.)Harms; Rubia cordifolia L. Anti leukemic compounds, which were isolated from medicinal plants are ginsenoside Ro, ginsenoside Rh2, Emodin, Yuanhuacine, Aleemodin, phorbocdiester, Triptolide, Homolycorine, Atractylol, Colchicnamile, Paeonol, Aspargus polysaccharide A.B.C.D, Indirubin, Leonunrine, Acinosohic acid, Trichosanthin, Ge 132, Schizandrin, allicin, Indirubin, cmdiumlactone chuanxiongol, 18A glycyrrhetic acid, Kansuiphorin A 13 oxyingenol Kansuiphorin B. These investigation suggest that it may be very useful for developing more effective anti leukemic new dregs from medicinal plants.