• Title/Summary/Keyword: ginsenoside Rh2

Search Result 238, Processing Time 0.023 seconds

Effect of Microwave Treatment on Korean Ginseng (고려인삼의 마이크로파 처리 효과)

  • Lee, Jae-Hag;Kum, Jun-Seok
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.3
    • /
    • pp.405-410
    • /
    • 2010
  • The effect of microwave treatment on Korean ginseng was studied by measuring the changes in moisture, crude lipid, crude ash, crude protein, total dietary fiber and saponin contents, as well as changes in density, color and microstructure. Korean ginseng was treated with 100 or 200 watts of microwaves for 1 or 3 hrs, respectively, followed by drying using an oven at $60^{\circ}C$ for 96 hrs. The moisture contents decreased to 13.12~10.77% from an initial 76.26%. The amounts of lipid and ash were reduced in proportion to the time of microwave treatment and level of microwave power. The amount of protein in ginseng after microwave treatment did not significantly change. The amount of total dietary fiber increased after microwave treatment and the color of dried ginseng became dark. The amounts of ginsenoside-$Rb_1$, $Rb_2+Rb_3$, Rc, Rd, Re, Rf, $Rg_1$, $Rg_2+Rh_1$ and $Rg_3$ were reduced after treatment with 100 watts of microwave radiation for 1 and 3. The amounts of ginsenoside-$Rb_1$, Rd, Re, Rf, $Rg_1$, $Rg_2+Rh_1$ and $Rg_3$ after treatment with 200 watts of microwave radiation for 1 and 3 hr also reduced. On the other hand, the amounts of ginsenoside-$Rb_2+Rb_3$ and Rc after treatment of ginseng with 200 watts of microwave radiation for 1 and 3 hrs were increased.

Variation of Phenolic Ingredient and Ginsenoside Content in Red ginseng Extract by Acid Treatment (Ascorbic acid 및 citric acid 처리에 따른 홍삼추출물의 페놀성 성분 및 ginsenoside 함량 변화)

  • Kong, Yeon-Hee;Rho, Jeong-Hae;Cho, Chang-Won;Kim, Mi-Hyun;Lee, Young-Chul;Kim, Sung-Soo;Lee, Pyeong-Jae;Choi, Sang-Yoon
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.194-198
    • /
    • 2009
  • The changes that would occur in a content of five phenolic ingredients and eight ginsenosides in acid-treatedred ginseng extracts were measured in this study. Acid-treated-red ginseng was prepared by treating with 1 M ascorbic acid or citric acid for 20 min. As a result, the contents of esculetin and quercetin in citric acid-treated-red ginseng increased by 3.5 times and 2.0 times, respectively, compared with control red ginseng. However, all phenolic ingredients decreased after treatment with ascorbic acid. In addition, the contents of ginsenoside Rg$_3$, Rh$_2$, Rd increased but those of Rb$_1$, Rc, Re, Rf, Rg$_1$ decreased after acid treatment. Although these tendency of results are similar, the rate of change of ginsenosides in citric acid-treated-red ginseng was higher than in ascorbic acid-treated-red ginseng. These results indicated that citric acid is more effective in the conversion of ginseng ingredients than ascorbic acid.

Simultaneous determination of 30 ginsenosides in Panax ginseng preparations using ultra performance liquid chromatography

  • Park, Hee-Won;In, Gyo;Han, Sung-Tai;Lee, Myoung-Woo;Kim, So-Young;Kim, Kyung-Tack;Cho, Byung-Goo;Han, Gyeong-Ho;Chang, Il-Moo
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.457-467
    • /
    • 2013
  • A quick and simple method for simultaneous determination of the 30 ginsenosides (ginsenoside Ro, Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, 20(S)-Rh1, 20(S)-Rh2, 20(R)-Rh2, F1, F2, F4, Ra1, Rg6, Rh4, Rk3, Rg5, Rk1, Rb3, Rk2, Rh3, compound Y, compound K, and notoginsenoside R1) in Panax ginseng preparations was developed and validated by an ultra performance liquid chromatography photo diode array detector. The separation of the 30 ginsenosides was efficiently undertaken on the Acquity BEH C-18 column with gradient elution with phosphoric acids. Especially the chromatogram of the ginsenoside Ro was dramatically enhanced by adding phosphoric acid. Under optimized conditions, the detection limits were 0.4 to 1.7 mg/L and the calibration curves of the peak areas for the 30 ginsenosides were linear over three orders of magnitude with a correlation coefficients greater than 0.999. The accuracy of the method was tested by a recovery measurement of the spiked samples which yielded good results of 89% to 118%. From these overall results, the proposed method may be helpful in the development and quality of P. ginseng preparations because of its wide range of applications due to the simultaneous analysis of many kinds of ginsenosides.

A Fermented Ginseng Extract, BST204, Inhibits Proliferation and Motility of Human Colon Cancer Cells

  • Park, Jong-Woo;Lee, Jae-Cheol;Ann, So-Ra;Seo, Dong-Wan;Choi, Wahn-Soo;Yoo, Young-Hyo;Park, Sun-Kyu;Choi, Jung-Young;Um, Sung-Hee;Ahn, Seong-Hoon;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • Panax ginseng CA Meyer, a herb from the Araliaceae, has traditionally been used as a medicinal plant in Asian countries. Ginseng extract fermented by ginsenoside-${\beta}$-glucosidase treatment is enriched in ginsenosides such as Rh2 and Rg3. Here we show that a fermented ginseng extract, BST204, has anti-proliferative and anti-invasive effects on HT-29 human colon cancer cells. Treatment of HT-29 cells with BST204 induced cell cycle arrest at $G_1$ phase without progression to apoptosis. This cell cycle arrest was accompanied by up-regulation of tumor suppressor proteins, p53 and p21$^{WAF1/Cip1}$, down-regulation of the cyclin-dependent kinase/cyclins, Cdk2, cyclin E, and cyclin D1 involved in $G_1$ or $G_1/S$ transition, and decrease in the phosphorylated form of retinoblastoma protein. In addition, BST204 suppressed the migration of HT-29 cells induced by 12-O-tetradecanoylphorbol-13-acetate, which correlated with the inhibition of metalloproteinase-9 activity and extracellular signal-regulated kinase activity. The effects of BST204 on the proliferation and the invasiveness of HT-29 cells were similar to those of Rh2. Taken together, the results suggest that fermentation of ginseng extract with ginsenoside-${\beta}$-glucosidase enhanced the anti-proliferative and the anti-invasive activity against human colon cancer cells and these anti-tumor effects of BST204 might be mediated in part by enriched Rh2.

인삼과 산양삼, 산삼의 HPLC를 이용한 부위별 성분 분석 비교

  • Han, Young-Ju;Kwon, Ki-Rok;Cha, Bae-Chun;Kwon, Oh-Man
    • Journal of Pharmacopuncture
    • /
    • v.10 no.1 s.22
    • /
    • pp.37-53
    • /
    • 2007
  • Objectives : The aim of this experiments is to provide an objective differentiation of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng through components analysis of different parts of ginseng. Methods : Comparative analyses of ginsenoside-$Rg_3$, ginsenoside-$Rh_2$, and ginsenosides $Rb_1$ and $Rg_1$ from the root, stem, and leaves of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng were conducted using HPLC. Results : 1. For content comparison of leaves, ginseng showed highest content of ginsenoside $Rg_1$ than other samples. Natural wild ginseng showed relatively high content of ginsenosides $Rg_1$ and $Rb_1$ than other samples. 2. For content comparison of the stem, ginseng and 10 years old Chinese cultivated wild ginseng didn't contain ginsenoside $Rb_1$. Natural wild ginseng showed higher content of ginsenosides $Rg_1$ and $Rb_1$ than other samples. 3. For content comparison of the root, ginsenoside $Rh_2$ was found only in 5 and 10 years old Korean cultivated wild ginseng. 4. Distribution of contents by the parts of ginseng was similar in ginseng and Chinese cultivated wild ginseng. Conclusions : Above experiment data can be an important indicator for the identification of ginseng, Korean and Chinese cultivated wild ginseng, and natural wild ginseng.

Simultaneous quantification of six nonpolar ginsenosides in white ginseng by reverse-phase high-performance liquid chromatography coupled with integrated pulsed amperometric detection

  • Song, Hyeyoung;Song, Kyung-Won;Hong, Seon-Pyo
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.563-569
    • /
    • 2020
  • Background: White ginseng consists of the roots and rhizomes of the Panax species, and red ginseng is made by steaming and drying white ginseng. While red ginseng has both polar and nonpolar ginsenosides, previous studies showed white ginseng to have only polar ginsenosides. Because nonpolar ginsenosides are formed through the manufacture of red ginseng from white ginseng, researchers have generally thought that nonpolar ginsenosides do not exist in white ginseng. Methods: We developed a simultaneous quantitative method for six nonpolar ginsenosides in white ginseng using reverse-phase high-performance liquid chromatography coupled with integrated pulsed amperometric detection. The nonpolar ginsenosides of white ginseng were extracted for 4 h under reflux with 50% methanol. Results: Using the gradient elution system, all target components were completely separated within 50 min. Nonpolar ginsenosides were determined in the rhizome head (RH), main root (MR), lateral root, and hairy root (HR) of 6-year-old white ginseng samples obtained from several regions (Geumsan, Punggi, and Kanghwa). The total content in the HR of white ginseng was 37.8-56.8% of that in the HR of red ginseng. The total content in the MR of white ginseng was 5.9-24.3% of that in the MR of red ginseng. In addition, the total content in the RH of white ginseng was 28.5-35.8% of that in the HR of red ginseng Conclusion: It was confirmed that nonpolar ginsenosides known to be specific components of red ginseng were present at substantial concentrations in the HR or RH of white ginseng.

Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo

  • Baek, Seung-Hoon;Shin, Byong-kyu;Kim, Nam Jae;Chang, Sun-Young;Park, Jeong Hill
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.233-239
    • /
    • 2017
  • Background: Nephrotoxicity is the major side effect in cisplatin chemotherapy. Previously, we reported that the ginsenosides Rk3 and Rh4 reduced cisplatin toxicity on porcine renal proximal epithelial tubular cells (LLC-PK1). Here, we aimed to evaluate the protective effect of ginsenosides Rk3 and Rh4 on kidney function and elucidate their antioxidant effect using in vitro and in vivo models of cisplatin-induced acute renal failure. Methods: An enriched mixture of ginsenosides Rk3 and Rh4 (KG-KH; 49.3% and 43.1%, respectively) was purified from sun ginseng (heat processed Panax ginseng). Cytotoxicity was induced by treatment of $20{\mu}M$ cisplatin to LLC-PK1 cells and rat model of acute renal failure was generated by single intraperitoneal injection of 5 mg/kg cisplatin. Protective effects were assessed by determining cell viability, reactive oxygen species generation, blood urea nitrogen, serum creatinine, antioxidant enzyme activity, and histopathological examination. Results: The in vitro assay demonstrated that KG-KH ($50{\mu}g/mL$) significantly increased cell viability (4.6-fold), superoxide dismutase activity (2.8-fold), and glutathione reductase activity (1.5-fold), but reduced reactive oxygen species generation (56%) compared to cisplatin control cells. KG-KH (6 mg/kg, per os) also significantly inhibited renal edema (87% kidney index) and dysfunction (71.4% blood urea nitrogen, 67.4% creatinine) compared to cisplatin control rats. Of note, KG-KH significantly recovered the kidney levels of catalase (1.2-fold) and superoxide dismutase (1.5-fold). Conclusion: Considering the oxidative injury as an early trigger of cisplatin nephrotoxicity, our findings suggest that ginsenosides Rk3 and Rh4 protect the kidney from cisplatin-induced oxidative injury and help to recover renal function by restoring intrinsic antioxidant defenses.

Effects of Ginsenosides on Acid Secretion in Gastric Cells Isolated from Human and Rabbit Gastric Mucosa (인체 및 토끼 위선세포에서 인삼사포닌의 위산분비 매개 신호전달체계에 미치는 영향)

  • Kim, Hye-Yeong;Kim, Sin-Il;Kim, Gyeong-Hwan
    • Journal of Ginseng Research
    • /
    • v.22 no.1
    • /
    • pp.22-31
    • /
    • 1998
  • Antiulcer effects of ginseng saponin, acidic polysaccharide and methanol extract of Panax ginseng in the patients and experimental animals were reported. Postulated action mechanisms of ginseng were histamine-Ht receptor blocking and increasing gastric blood flow In the present study, the effect of ginsenosides, the biologically active glycosides of ginseng, on gastric acid secretion was examined using gastric cells isolated from human and rabbit gastric mucosa. Ginseng saponin, ginsenoside $Rb_1$, $Rb_2$, $Rg_1$ and $Rh_2$ were tested in unstimulated as well as stimulated gastric cells. Histamine ($10^4$M) and 3-isobutyl-1-methylxanthine ($10^4$M) were used as secretagogues. To investigate the mechanism of ginsenosides on acid secretion, the levels of cAMP and cGMP were monitored in gastric cells. As a result, high concerltration(1mg/ml) of ginseng saponin showed 73-75% of stimulated acid secretion in control gastric cells. However, ginseng saponin had no effect on unstimulated acid secretion and the levels of cGMP and cAMP in gastric cells. Ginsenoside $Rb_1$, $Rb_2$ and $Rh_2$ significantly inhibited stimulated acid secretion. Gastric cGMP levels were increased by all ginsenosides tested while cAMP levels were increased by all ginsenosides in unstimulated state of gastric cells, but increased by ginsenosides ginsenoside $Rg_1$ and $Rh_2$in stimulated state of gastric cells. The results suggest that inhibition of ginseng saponin on gastric acid secretion represents a complex effect of individual ginsenosides, which produce a range of effect on acid secretion. The inhibition site of ginseng saponin on stimulated acid secretion is postulated as post cAMP levels in acid secretary pathway such as protein phosphorylation or proton pump. Nitric oxide may not be involved in the inhibitory effect of ginseng saponin on stimulated acid secretion.

  • PDF

The Comparison of Ginseng Prosapogenin Composition and Contents in Red and Black Ginseng (흑삼과 홍삼의 인삼 프로사포게닌 성분 비교)

  • Jo, Hee-Kyung;Sung, Min-Chang;Ko, Sung-Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.4
    • /
    • pp.361-365
    • /
    • 2011
  • The objective of this study is to provide basic information for developing a high-value ginseng product using ginseng saponin and prosapogenin. In order to achieve the proposed objective ginsenoside compositions of Black (BG) and Red (RG) ginseng extract with 95% ethyl alcohol were examined by means of HPLC. The crude saponin and ginsenoside composition of processed ginseng products were analyzed and compared, with BG topping the list with a crude saponin content of 7.53%, followed by RG (5.29%). Ginseng prosapogenin (ginsenosides $Rg_2$, $Rg_3$, $Rg_5$, $Rg_6$, $Rh_1$, $Rh_4$, $Rk_1$, $Rk_3$, $F_1$ and $F_4$) in BG was found to be contained almost 2.6 times as much as that in RG. Ginsenosides $Rg_3$, $Rg_5$, $Rk_1$, $Rh_4$ and $F_4$ in BG in particular were found to be almost 3 times as much as those in RG. $Rg_6$ and $Rk_3$ in BG were also found to be almost 4 times as much as those in RG.

Antiallergic Activity of Ginsenoside $R_{h2}$

  • Park, Eun-Kyung;Choo, Min-Kyun;Kim, Eun-Jin;Han, Myung-Joo;Kim, Dong-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.161.3-162
    • /
    • 2003
  • Ginseng (the root of Panax ginseng C.A $M_{EYER}$, family Araliaceae) is frequently used as a crude substance in Asian countries as a traditional medicine. The major components of ginseng are ginsenosides, which have been reported to show various biological activities including antiinflammatory activity and antitumor effect. In addition, Sugiyama et al. reported that ginsenoside Rg3 suppresses histamine release from mast cells due to stimulation with compound 48/80 in vitro. However, the antiallergic effects of ginsenoside Rh2, which is metabolized by human intestinal bacteria to ginsenoside Rg3, have not been studied. (omitted)

  • PDF