• Title/Summary/Keyword: ginsenoside Rd

Search Result 282, Processing Time 0.03 seconds

Identification and quantification of major malonyl ginsenosides isolated from Panax ginseng C.A. Meyer (인삼(Panax ginseng C.A. Meyer)로부터 Malonyl ginsenoside의 분리 및 정량분석)

  • Shin, Woo Cheol;Jung, Jiyun;Na, Hyeon Seon;Bo, Jeon Hwang;Kim, Hyoung-Geun;Yoon, Dahye;Choi, Bo-Ram;Lee, Young-Seob;Kim, Geum-Soog;Baek, Nam-In;Lee, Yi;Lee, Dae Young
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.375-384
    • /
    • 2019
  • The root of Panax ginseng C.A. Meyer were extracted with 70% aqueous EtOH and the concentrates were partitioned into MeOH and H2O fractions using Diaion HP-20. The repeated SiO2 or octadecyl SiO2 column, and MPLC for the MeOH fraction led to isolation of four malonyl ginsenosides. The chemical structures of these compounds were determined as malonyl ginsenoside Rd (1) malonyl ginsenoside Rc (2) malonyl ginsenoside Rb2 (3) malonyl ginsenoside Rb1 (4) based on spectroscopic analyses including Nuclear magnetic resonance and HR-TOF/MS. The contents of malonyl ginsenoside Rb1 was highist as 5.44 mg/g of five years of ginseng. And malonyl ginsenoside Rd was lowest as 0.11 mg/g of six years of ginseng. Additionally, the malonyl ginsenoside Rd exhibited hepatoprotective effect against ethanol-induced hepatotoxicity in HepG2 cell line.

Ginsenoside Rb1 is Transformed into Rd and Rh2 by Microbacterium trichothecenolyticum

  • Kim, Hansoo;Kim, Jeong-Hoon;Lee, Phil Young;Bae, Kwang-Hee;Cho, Sayeon;Park, Byoung Chul;Shin, Heungsop;Park, Sung Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1802-1805
    • /
    • 2013
  • Ginsenosides are the most important ingredient of ginseng and are known to possess many pharmacological and biological effects. Rb1, a major protopanaxadiol ginsenoside, is the most abundant ginsenoside in Panax ginseng C.A Meyer and can be hydrolyzed into more pharmaceutically potent minor ginsenosides. To identify a microorganism that is capable of converting Rb1 into other ginsenosides, we screened 12 Microbacterium spp., and M. trichothecenolyticum was identified as a likely candidate. M. trichothecenolyticum converted Rb1 into Rd and then into Rh2 based on TLC and HPLC analyses of reaction products. This biotransformation method can be easily applied for mass production of Rd and Rh2 by using Rb1.

Anti-obesity Effects of Ginsenoside Rd via AMPK and PPAR Gamma (진세노사이드 Rd의 AMPK 및 PPAR 감마의 신호전달경로를 통한 항비만효과)

  • Kim, Myung-Sunny;Lee, Myoung-Soo;Kim, Soon-Hee;Kim, Sung-Hee;Kim, Hyun-Jin;Sung, Mi-Jeong;Kim, Hye-Young;Kwon, Dae-Young;Hwang, Jin-Taek
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.341-344
    • /
    • 2007
  • Obesity is a major obstacle for human health, which induces various diseases such as cardiac injury and type 2 diabetes. Ginsenosides, active components of ginseng extract, exert various physiological effects. However, There are still no evidence for their anti obesity effects. In this study, we investigated the effects of ginsenoside Rd on adipocyte differentiation in 3T3-L1 cells. Our data show that ginsenoside Rd (80 uM) was effective in adipocyte differentiation inhibition. These inhibitory effects of ginsenosides on adipocyte differentiation were accompanied by PPAR gamma inhibition in rosiglitazone-treated cells. We also tested whether AMP-activated protein kinase (AMPK) activation was involved in the effects of these ginsenosides. AMPK is a master target for obesity, ginsenoside Rd significantly activated AMPK. Taken together, these results suggest that the anti obesity effects of ginsenoside Rd involve the AMPK signaling pathway and PPAR-gamma inhibition.

Comparison of Physicochemical Properties and Malonyl Ginsenoside Contents between White and Red Ginseng (백삼 및 홍삼의 이화학적 특성 및 말로닐 진세노사이드 함량 비교)

  • Oh, Myeong Hwan;Park, Young Sik;Lee, Hwan;Kim, Na Young;Jang, Young Boo;Park, Ji Hun;Kwak, Jun Young;Park, Young Soon;Park, Jong Dae;Pyo, Mi Kyung
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.84-91
    • /
    • 2016
  • Korean ginseng (Panax ginseng C. A. Meyer) has been used as a traditional herbal medicine in East Asia and is very popular in the world, because of its health benefits. To comparison of pharmacological components and physiochemical properties between white and red ginseng from same body, we analyzed ginsenoside and malonyl ginsenoside, ash, crude lipid/protein, fatty acid, mineral contents, total/reducing sugar, and total phenolic and acidic polysaccharide contents. The general components did not show any significant difference between white and red ginseng. Whereas, the content of neutral ginsenoside $Rb_1$, $Rb_2$, Rc and Rd were higher in red ginseng than those of white ginseng. However, malonyl ginsenoside such as $m-Rb_1$, $m-Rb_2$, m-Rc and m-Rd in white ginseng were similar to neutral ginsenoside $Rb_1$, $Rb_2$, Rc and Rd in white ginseng and far higher than those of red ginseng. These results exhibit that malonyl ginsenosides were converted to neutral ginsenosides in steaming process for red ginseng. So, we suggest that malonyl ginsenoside are necessary to applies in ginsenoside analysis of Korean ginseng.

Larqe guantity isolation of Ginsenoside $-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re\;and\;-Rg_1$ in Panax ginseng C.A. Meyer by High Performance Liquid Chromatography (고속액체(高速液體) chromatography에 의(依)한 Ginsenoside $-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re$$-Rg_1$의 대량분리(大量分離))

  • Choi, Jin-Ho;Kim, Woo-Jung;Bae, Hyo-Won;Oh, Sung-Ki;Oura, Hikokichi
    • Applied Biological Chemistry
    • /
    • v.23 no.4
    • /
    • pp.199-205
    • /
    • 1980
  • Relatively large quantity of the major components of saponin, $ginsenoside-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re\;and\;-Rg_1$ from Panax ginseng C.A. Meyer were isolated using preparative and semipreparative high performance liquid chromatography, and analyzed by analytical HPLC. The application of HPLC for isolation of ginsenosides was not only very effective for rapid analysis but also reduced the isolation time. The isolation capacity of pure ginsenosides was $30{\sim}50mg/hr$.

  • PDF

Content Comparison of Proximate Compositions, Various Solvent Extracts and Saponins in Root, Leaf and Stem of Panax Ginseng (인삼의 근, 엽 및 경의 일반성분, 용매별 엑기스 및 사포닌 함량 비교)

  • 김석창;최강주
    • Journal of Ginseng Research
    • /
    • v.11 no.2
    • /
    • pp.118-122
    • /
    • 1987
  • This study was carried out to investigate the effective components, especially saponins, in aerial parts of Panax ginseng. The contents of methanol and ethanol extracts in ginseng leaf were 35.9% and 27.3%, much higher than 15.4% and 8.37% in ginseng root and 21.7% and 16.3% in ginseng stem. And ginseng stem showed as high content of crude fiber as 39.2% which is very high compared with other two parts of ginseng. The contents of total crude saponin were 4.78%, 2.38% and 19.58% in ginseng root, stem and leaf, respectively. In ginseng leaf seven root ginseno-sides-ginsenoside-Rgl(3.32%), -Re(3.24%), -Rd(2.32 %), -Rc(0.65%), -Rb2(0.92%), -Rbl(0.29%), and -Rf(0.11%)-were analyzed by HPLC, Seven gisneno- sides-ginsenoside-Rgl(0.28%), -Re(0.3%), -Rd(0.05%), -Rf(0.01%), -Rc(trace), -Rb2(trace) and -Rbl(trace)-were detected in ginseng stem. Ginseng leaf contained high percentage of saponin and especially of ginsenoside-Rgl, -Re and -Rd. Therefore, ginseng leaf was good resources for ginsenoside-Rgl, -Re and -Rd.

  • PDF

Enzymatic Biotransformation of Ginsenoside Rb1 and Gypenoside XVII into Ginsenosides Rd and F2 by Recombinant β-glucosidase from Flavobacterium johnsoniae

  • Hong, Hao;Cui, Chang-Hao;Kim, Jin-Kwang;Jin, Feng-Xie;Kim, Sun-Chang;Im, Wan-Taek
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.418-424
    • /
    • 2012
  • This study focused on the enzymatic biotransformation of the major ginsenoside Rb1 into Rd for the mass production of minor ginsenosides using a novel recombinant ${\beta}$-glucosidase from Flavobacterium johnsoniae. The gene (bglF3) consisting of 2,235 bp (744 amino acid residues) was cloned and the recombinant enzyme overexpressed in Escherichia coli BL21(DE3) was characterized. This enzyme could transform ginsenoside Rb1 and gypenoside XVII to the ginsenosides Rd and F2, respectively. The glutathione S-transferase (GST) fused BglF3 was purified with GST-bind agarose resin and characterized. The kinetic parameters for ${\beta}$-glucosidase had apparent $K_m$ values of $0.91{\pm}0.02$ and $2.84{\pm}0.05$ mM and $V_{max}$ values of $5.75{\pm}0.12$ and $0.71{\pm}0.01{\mu}mol{\cdot}min^{-1}{\cdot}mg$ of $protein^{-1}$ against p-nitrophenyl-${\beta}$-D-glucopyranoside and Rb1, respectively. At optimal conditions of pH 6.0 and $37^{\circ}C$, BglF3 could only hydrolyze the outer glucose moiety of ginsenoside Rb1 and gypenoside XVII at the C-20 position of aglycon into ginsenosides Rd and F2, respectively. These results indicate that the recombinant BglF3 could be useful for the mass production of ginsenosides Rd and F2 in the pharmaceutical or cosmetic industry.

Isolation of Stenotrophomonas rhizopilae Strain GFC09 with Ginsenoside Converting Activity and Anti-wrinkle Effects of Converted Ginsenosides (사포닌 전환 활성 Stenotrophomonas rhizopilae Strain GFC09 균주의 분리 동정 및 전환 사포닌의 주름 개선 효과)

  • Min, Jin Woo;Kim, Hye-Jin;Joo, Kwang-Sik;Kang, Hee-Cheol
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.375-382
    • /
    • 2015
  • Ginsenosides (ginseng saponin) as the one of important pharmaceutical compounds of ginseng and is responsible for the pharmacological and biological activities. These ginsenoside produces diverse small molecules ginsenoside which have more pharmacological activities including anti-wrinkle, anti-cancer and anti-oxidant effects. In the present study, we isolated bacteria using esculin agar, to produce ${\beta}$-glucosidase, and we focused on the bio-transformation of ginsenoside. Phylogenetic tree analysis was performed by comparing the 16S rRNA sequences; we identified the strain as Stenotrophomonas rhizopilae strain GFC09. In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside $Rb_1$. Bioconversion of ginsenoside $Rb_1$ were analyzed using TLC and HPLC. The crude enzyme hydrolyzed the ginsenoside $Rb_1$ along the following pathway: LB: $Rb_1{\rightarrow}Rd{\rightarrow}F_2$ into compound K, TSB: $Rb_1{\rightarrow}Rd{\rightarrow}F_2$. The structure of the hydrolyzed metabolites were identified by NMR. The activity screening tests showed that the conversion product induced the production of type I procollagen in a dose-dependent manner. These results suggested that hydrolyzed ginseng product containing the ginsenoside $F_2$ and compound K could be useful as an active ingredient for wrinkle-care cosmetics.

Purification of the Convertible Enzyme of Ginseng Saponin from Rhizopus japonicus (Rhizopus japonicus가 생산하는 인삼 Saponin 전환효소의 정제)

  • 김상달;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.438-442
    • /
    • 1988
  • The enzyme produced by Rhizopus japonicus was able to convert selectively ginsenoside-Rb$_1$which is the most abundant ginseng saponin, into ginsenoside-Rd which was known to be superior to ginsenoside-Rb$_1$pharmaceutically. The convertible enzyme was purified homogeneous from wheat bran culture of Rhizopus japonicus by ammonium sulfate fractionation and column chromatography of TEAE-cellulose, DEAE-Sephadex A-50, Sephadex G-150, Sepharose 2B. Specific activity of the purified enzyme was increased to a bent 96 folds and yield was appeared to be 11% of culture extract. Evidence for homogenity was obtained from polyacrylamide and SDS-polyacrylamide gel electrophoresis. Molecular weight of the enzyme was estimated about 88, 000 daltons by Sephadex G-l50 gel filtration and SDS-polyacrylamide gel electrophoresis, and it did not consist of any subunit.

  • PDF

Preparation of a 20(R)-Ginsenoside $Rh_2$ and the 20(S) Epimer from Protopanaxadiol Saponins of Panax ginseng C.A. Meyer (인삼의 Protopanaxadiol계 사포닌으로부터 20(R)-Ginsenoside $Rh_2$ 및 20(S) 이성체의 제조)

  • 김신일;백남인;김동선;이유희;강규상;박종대
    • YAKHAK HOEJI
    • /
    • v.35 no.5
    • /
    • pp.432-437
    • /
    • 1991
  • A mixture of 20(R)- and 20(S)-ginsenoside Rg$_{3}$ was obtained under mild acidic hydrolysis from protopanaxadiol saponins, ginsenosides Rb$_{1}$, Rb$_{2}$, Rc and Rd. The product was acetylated to give the peracetates, which were further converted into 20(R)-ginsenoside Rg$_{3}$, 20(S)-ginsenoside Rg$_{3}$, 20(R)-ginsenoside Rh$_{2}$ and 20(S)-ginsenoside Rh$_{2}$ by the direct alkaline treatment depending upon two kinds of temperature conditions respectively. The structure and physicochemical properties of a prosapogenin, 20(R)-ginsenoside Rh$_{2}$, were investigated.

  • PDF