• Title/Summary/Keyword: ginsenoside Rb1

Search Result 529, Processing Time 0.028 seconds

Ginsenosides from the Roots of Korean Cultivated-Wild Ginseng

  • Yang, Min-Cheol;Seo, Dong-Sang;Hong, Jong-Ki;Hong, Sung-Hyun;Kim, Young-Choong;Lee, Kang-Ro
    • Natural Product Sciences
    • /
    • v.14 no.3
    • /
    • pp.171-176
    • /
    • 2008
  • Column chromatographic separation of 70% EtOH extract of the roots of Korean cultivated-wild ginseng led to the isolation of ten ginsenosides (1 - 10). The isolated compounds were identified as ginsenoside $Rg_1$ (1), ginsenoside Re (2), ginsenoside Rc (3), ginsenoside $Rb_1$ (4), ginsenoside $Rb_2$ (5), ginsenoside Rd (6), ginsenoside $Rg_3$ (7), ginsenoside $F_2$ (8), ginsenoside $Rb_3$ (9), and ginsenoside $Rd_2$ (10) by physicochemical and spectroscopic methods. The compounds (1 - 10) were for the first time isolated from the roots of Korean cultivated-wild ginseng.

Ginsenoside Rb2 Upregulates the Low Density Lipoprotein Receptor Gene Expression through the Activation of the Sterol Regulated Element Binding Protein Maturation in HepG2 Cells

  • Lim, Grewo;Lee, Hyunil;Kim, Eun-Ju;Noh, Yun-Hee;Ro, Youngtae;Koo, Ja-Hyun
    • Journal of Ginseng Research
    • /
    • v.29 no.4
    • /
    • pp.159-166
    • /
    • 2005
  • Ginsenosides, a group of Panax ginseng saponins, exert the lowering effects of plasma cholesterol levels in animals. We had reported earlier that ginsenoside Rb2 upregulate low-density lipoprotein receptor (LDLR) expression via a mechanism that is dependent of the activation of sterol response element binding protein 2 (SREBP-2) expression. This study was conducted to determine the effects of ginsenoside Rb2 on the expression of the hepatic LDLR expression at cellular levels using HepG2 cells, and to evaluate whether the sterol response element binding protein 1 (SREBP-l) was involved in the regulation of LDLR expression. Incubation of HepG2 cells in serum-free medium supplemented with cholesterol $(10{\mu}g/ml)$ for 8 hours decreased the mRNAs of LDLR mRNA by $12\%$ and SREBP-l mRNA by $35\%$. Ginsenoside Rb2 antagonized the repressive effects of cholesterol and increased both LDLR and SREBP-l mRNA expression to 1.5- and 2-fold, respectively. Furthermore, Western blot and confocal microscopic analyses with SREBP-l polyclonal antibody revealed that ginsenoside Rb2 enhanced the maturation of the SREBP-1 from the inactive precursor form in ER membrane to the active transcription factor form in nucleus. These results suggest that ginsenoside Rb2 upregulates LDLR expression via a mechanism that is dependent of the activation of not only SREBP-2 expression, but also SREBP-1 expression and maturation, and also indicate that the pharmacological value of ginsenoside Rb2 may be distinguished from that of lovastatin which is reported that it upregulate LDLR through SREBP-2 only, not through SREBP-1.

Anti-oxidative Effect of Ginsenoside $Rb_1$ on the HCI.Ethanol-Induced Gastric Tissue in Rats (흰쥐의 염산.에탄올 유발 위염 위조직에서 ginsenoside $Rb_1$의 항산화 효과)

  • Hyun, Jin-Ee;Kim, Yeong-Shik;Jeong, Choon-Sik
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.3 s.130
    • /
    • pp.252-256
    • /
    • 2002
  • In the previous study, we demonstrated that ginsenoside $Rb_1$ isolated from the butanol fraction of the head of Panax ginseng had significant gastroprotective activity on gastritis and gastric ulcer models in rats. It has been well established that drugs to have capacity of scavenging or inhibiting the generation of reactive oxygen radicals prevent the gastric mucosal injury. Ginsenoside $Rb_1$ was tested on HCl ethanol-induced gastritis in rats, DPPH-induced free radical scavenging effect, MDA assay, GSH activity, and SOD activity in gastric tissue. It showed significant inhibition in HCl ethanol-induced gastritis, and al~o significantly increase of GSH activated SOD. We speculate that the protective effect of ginsenoside $Rb_1$ against HCl ethanol-induced gastric mucosal damage is originated from the increase of GSH and the activation of SOD.

Patterns and Contents of Ginsenoside in Normal Root Parts and Hairy Root Lines of Panax ginseng C. A. Meyer (인삼 뿌리 부위별 및 모상근 세포주간 ginsenoside 양상 및 함량)

  • 양덕춘;양계진
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.485-489
    • /
    • 2000
  • The patterns and contents of ginsenosides were examined in normal root parts and hairy root lines of Panax ginseng C. A. Meyer. Ginsenoside-Rb$_1$, -Rb$_2$, -Rc, -Rd, -Re, -Rf, -Rg$_1$, -Rg$_2$ were detected in normal roots and hairy roots of ginseng. The patterns and contents of ginsenosides in that were very difference each other. The contents of total ginsenoside of hairy root (KGHR-1) was 17.42 mg/g dry wt, it's highest compared to others. Ginsenoside contents of hairy root (KGHR-1) was higher on ginsenoside-Rd, Rg$_1$, KGHR-5 was higher on ginsenoside-Rb$_1$, Rg$_1$, and KGHR-8 was higher on ginsenoside-Rd, Re than others. The contents of total ginsenosides on 6 years old ginseng cultured in the field were high in the order of main root, lateral root and fine roots, and content of ginsenosides in fine roots was 3.2 times higher than that in main root. The ratio of ginsenoside-Rg$_1$to total ginsenosides were about 3.43%, 8.68% and 14.18% respectively on fine root, lateral root and main root, it's very lower than that in hairy roots. It is suggested that specific ginsenosides can be produce in cultures of ginseng hairy roots.

  • PDF

Biotransformation of Major Ginsenoside Rb1 toRd by Dekkera anomala YAE-1 from Mongolian Fermented Milk (Airag)

  • Renchinkhand, Gereltuya;Cho, Soo-Hyun;Park, Young W.;Song, Gyu-Yong;Nam, Myoung Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1536-1542
    • /
    • 2020
  • Dekkera anomala YAE-1 strain separated from "airag" (Mongolian fermented mare's milk) produces β-glucosidase, which can convert ginsenoside Rb1 from Panax ginseng. Ginseng- derived bioactive components such as ginsenoside Rb1 have various immunological and anticancer activities. Airag was collected from five different mare milk farms located near Ulaanbaatar, Mongolia. YAE-1 strains were isolated from airag to examine the hydrolytic activities of β-glucosidase on Korean Panax ginseng using an API ZYM kit. Supernatants of selected cultures having β-glucosidase activity were examined for hydrolysis of the major ginsenoside Rb1 at 40℃, pH 5.0. The YAE-1 strain was found to be nearly identical at 99.9% homology with Dekkera anomala DB-7B, and was thus named Dekkera anomala YAE-1. This strain exerted higher β-glucosidase activity than other enzymes. Reaction mixtures from Dekkera anomala YAE-1 showed great capacity for converting ginsenoside Rb1 to ginsenoside Rd. The β-glucosidase produced by Dekkera anomala YAE-1 was able to hydrolyze ginsenoside Rb1 and convert it to Rd during fermentation of the ginseng. The amount of ginsenoside Rd was highly increased from 0 to 1.404 mg/ml in fermented 20% ginseng root at 7 days.

Analysis of Ginsenosides of White and Red Ginseng Concentrates (백삼 및 홍삼 농축액의 사포닌 분석)

  • Ko, Sung-Kwon;Lee, Chung-Ryul;Choi, Yong-Eui;Im, Byung-Ok;Sung, Jong-Hwan;Yoon, Kwang-Ro
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.536-539
    • /
    • 2003
  • Commercial white and red ginseng concentrates were analysed for total ginsenoside contents, and compositions of ginsenosides $Rb_1,\;Rb_2,\;Rc,\;Re,\;Rf,\;Rg_1,\;20(S)\;Rg_3,\;20(S)\;Rh_1,\;and\;20(R)\;Rh_1$. The content of crude saponin and total ginsenosides of white ginseng concentrates (WGC) were about 2-3 times higher than those of red ginseng concentrates (RGC). HPLC showed that each ginsenoside content was higher in WGC, with those of $Rb_1,\;Rg_1,\;and\;Rb_2$ being over three times higher than that of RGC. 20(S)- and 20(R)-ginsenoside $Rg_3$, specific artifacts found only in red ginseng, were detected both in WGC and RGC by HPLC. differences in the contents of these specific ginsenosides between WGC and RGC were not significant. The contents of 20(S)-ginsenoside $Rg_1$, determined by HPLC were 0.40 and 0.53 in WGC, whereas 0.48% and 0.47%, and those of 20(R)-ginsenoside $Rg_3$, were 0.14 and 0.22% in WGC, and 0.10 and 0.11% in RGC using the methods of shibata and food Code, respectively.

Larqe guantity isolation of Ginsenoside $-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re\;and\;-Rg_1$ in Panax ginseng C.A. Meyer by High Performance Liquid Chromatography (고속액체(高速液體) chromatography에 의(依)한 Ginsenoside $-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re$$-Rg_1$의 대량분리(大量分離))

  • Choi, Jin-Ho;Kim, Woo-Jung;Bae, Hyo-Won;Oh, Sung-Ki;Oura, Hikokichi
    • Applied Biological Chemistry
    • /
    • v.23 no.4
    • /
    • pp.199-205
    • /
    • 1980
  • Relatively large quantity of the major components of saponin, $ginsenoside-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re\;and\;-Rg_1$ from Panax ginseng C.A. Meyer were isolated using preparative and semipreparative high performance liquid chromatography, and analyzed by analytical HPLC. The application of HPLC for isolation of ginsenosides was not only very effective for rapid analysis but also reduced the isolation time. The isolation capacity of pure ginsenosides was $30{\sim}50mg/hr$.

  • PDF

Conversion of Ginsenoside $Rb_1$ by Ginseng Soil Bacterium Cellulosimicrobium sp. Gsoil 235 According to Various Culture Broths (인삼 토양 미생물 Cellulosimicrobium sp. Gsoil 235의 배지조성에 따른 Ginsenoside $Rb_1$ 전환)

  • Na, Ju-Ryun;Kim, Yu-Jin;Kim, Se-Hwa;Kim, Ho-Bin;Shim, Ju-Sun;Kim, Se-Young;Yang, Deok-Chun
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.55-61
    • /
    • 2009
  • Ginseng saponins (a secondary metabolite, termed ginsenosides) are the principal bioactive ingredients of ginseng, and modification of the sugar chains may markedly change the its biological activity. One of soil bacteria having $\beta$-glucosidase (to transform ginsenoside $Rb_1$) activity was isolated from soil of a ginseng field in Daejeon. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Cellulosimicrobium, with highest sequence similarity (99.7%) to Cellulosimicrobium funkei ATCC BAA-$886^T$. The strain, Gsoil 235, could transform ginsenoside $Rb_1$ into Rd, $Rg_3$ and 3 of un-known ginsenosides by the analyses of TLC, HPLC. By investigating its deglycosylation progress, the optimal broth for, $\beta$-glucosidase was nutrient broth (In 48 hours, almost ginsenoside $Rb_1$ could be transformed into minor ginsenosides). On the contrary, the optimal broth for growth was determined as trypic soy broth (TSB).

Novel enzymatic elimination method for the chromatographic purification of ginsenoside Rb3 in an isomeric mixture

  • Cui, Chang-Hao;Fu, Yaoyao;Jeon, Byeong-Min;Kim, Sun-Chang;Im, Wan-Taek
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.784-789
    • /
    • 2020
  • Background: The separation of isomeric compounds from a mixture is a recurring problem in chemistry and phytochemistry research. The purification of pharmacologically active ginsenoside Rb3 from ginseng extracts is limited by the co-existence of its isomer Rb2. The aim of the present study was to develop an enzymatic elimination-combined purification method to obtain pure Rb3 from a mixture of isomers. Methods: To isolate Rb3 from the isomeric mixture, a simple enzymatic selective elimination method was used. A ginsenoside-transforming glycoside hydrolase (Bgp2) was employed to selectively hydrolyze Rb2 into ginsenoside Rd. Ginsenoside Rb3 was then efficiently separated from the mixture using a traditional chromatographic method. Results: Chromatographic purification of Rb3 was achieved using this novel enzymatic elimination-combined method, with 58.6-times higher yield and 13.1% less time than those of the traditional chromatographic method, with a lower minimum column length for purification. The novelty of this study was the use of a recombinant glycosidase for the selective elimination of the isomer. The isolated ginsenoside Rb3 can be used in further pharmaceutical studies. Conclusions: Herein, we demonstrated a novel enzymatic elimination-combined purification method for the chromatographic purification of ginsenoside Rb3. This method can also be applied to purify other isomeric glycoconjugates in mixtures.

Effects of Interactions Among Age, Cultivation Method (Location) and Population on Ginsenoside Content of Wild Panax Quinquefolium L. One Year after Transplanting from Wild

  • Lim, Wan-Sang
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.254-261
    • /
    • 2005
  • To evaluate the effects of cultivar, environment, age and cultivation times on ginsenoside content among 8 wild populations of American ginseng (Panax quinquefolium), the concentrations of 6 ginsenosides in root were determined at the time of collection (T0) of plants from the wild and 1 year after (T1) transplanting the roots to each of two different forest garden locations. Both location and population had significant effects on root and shoot growth. Overall, ginsenoside Rb1 was most abundant. The second most abundant ginsenoside were Re and Rg1, however the contents of them were not significantly different from each other. Concentrations of Rg1 and Re were inversely related. Ginsenoside Re was influenced by population and location. Ginsenoside Rg1, Rb1, Rc, Rb2 and Rd were influenced by population, location and age. Ginsenoside levels were consistently lower but growth was consistently higher at the more intensively managed garden location.