• Title/Summary/Keyword: ginsenoside F2

Search Result 134, Processing Time 0.03 seconds

Isolation of Stenotrophomonas rhizopilae Strain GFC09 with Ginsenoside Converting Activity and Anti-wrinkle Effects of Converted Ginsenosides (사포닌 전환 활성 Stenotrophomonas rhizopilae Strain GFC09 균주의 분리 동정 및 전환 사포닌의 주름 개선 효과)

  • Min, Jin Woo;Kim, Hye-Jin;Joo, Kwang-Sik;Kang, Hee-Cheol
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.375-382
    • /
    • 2015
  • Ginsenosides (ginseng saponin) as the one of important pharmaceutical compounds of ginseng and is responsible for the pharmacological and biological activities. These ginsenoside produces diverse small molecules ginsenoside which have more pharmacological activities including anti-wrinkle, anti-cancer and anti-oxidant effects. In the present study, we isolated bacteria using esculin agar, to produce ${\beta}$-glucosidase, and we focused on the bio-transformation of ginsenoside. Phylogenetic tree analysis was performed by comparing the 16S rRNA sequences; we identified the strain as Stenotrophomonas rhizopilae strain GFC09. In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside $Rb_1$. Bioconversion of ginsenoside $Rb_1$ were analyzed using TLC and HPLC. The crude enzyme hydrolyzed the ginsenoside $Rb_1$ along the following pathway: LB: $Rb_1{\rightarrow}Rd{\rightarrow}F_2$ into compound K, TSB: $Rb_1{\rightarrow}Rd{\rightarrow}F_2$. The structure of the hydrolyzed metabolites were identified by NMR. The activity screening tests showed that the conversion product induced the production of type I procollagen in a dose-dependent manner. These results suggested that hydrolyzed ginseng product containing the ginsenoside $F_2$ and compound K could be useful as an active ingredient for wrinkle-care cosmetics.

Matrix metalloproteinase-13 downregulation and potential cartilage protective action of the Korean Red Ginseng preparation

  • Lee, Je Hyeong;Shehzad, Omer;Ko, Sung Kwon;Kim, Yeong Shik;Kim, Hyun Pyo
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.54-60
    • /
    • 2015
  • Background: The present study was designed to prepare and find the optimum active preparation or fraction from Korea Red Ginseng inhibiting matrix metalloproteinase-13 (MMP-13) expression, because MMP-13 is a pivotal enzyme to degrade the collagen matrix of the joint cartilage. Methods: From total red ginseng ethanol extract, n-BuOH fraction (total ginsenoside-enriched fraction), ginsenoside diol-type-enriched fraction (GDF), and ginsenoside triol-type-enriched fraction (GTF) were prepared, and ginsenoside diol type-/F4-enriched fraction (GDF/F4) was obtained from Panax ginseng leaf extract. Results: The n-BuOH fraction, GDF, and GDF/F4 clearly inhibited MMP-13 expression compared to interleukin-$1{\beta}$-treated SW1353 cells (human chondrosarcoma), whereas the total extract and ginsenoside diol-type-enriched fraction did not. In particular, GDF/F4, the most effective inhibitor, blocked the activation of p38 mitogen-activated protein kinase (p38 MAPK), c-Jun-activated protein kinase (JNK), and signal transducer and activator of transcription-1/2 (STAT-1/2) among the signal transcription pathways involved. Further, GDF/F4 also inhibited the glycosaminoglycan release from interleukin-$1{\alpha}$-treated rabbit cartilage culture (30.6% inhibition at $30{\mu}g/mL$). Conclusion: Some preparations from Korean Red Ginseng and ginseng leaves, particularly GDF/F4, may possess the protective activity against cartilage degradation in joint disorders, and may have potential as new therapeutic agents.

Ginsenoside Rg3 Induces Apoptosis in B16F10 Melanoma Cells (ginsenoside Rg3에 의한 B16F10 흑색종 세포의 세포사멸 유도)

  • Lee, Seul Gi;Kim, Byung Soo;Nam, Ju-Ock
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.1001-1005
    • /
    • 2014
  • Ginsenoside Rg3 is one of the active ingredients extracted from red ginseng, and it is an effective chemical component of the human body and well known in herbal medicine as a restorative agent. Several studies have shown that Rg3 has a potent anti-tumor effect on various cancer cell lines. However, Rg3-induced apoptosis in B16F10 melanoma cancer cells is not well understood. In the present study, we tested whether ginsenoside Rg3 could induce apoptosis in B16F10 melanoma cells. We found that Rg3 could inhibit B16F10 melanoma cell viability in a dose-dependent manner, but not normal cells, such as EA.hy.926 and NIH3T3 cells. We also found that Rg3 could induce apoptosis in B16F10 melanoma cells using tunnel-staining assay in a dose-dependent manner. Rg3 treatment induces the phosphorylation of p38 and the expression of Bax, but it inhibits the expressions of the phosphorylation of focal adhesion kinase Bcl2 and pro-caspase3. Taken together, our data suggest that Rg3 could be useful as an anti-cancer agent in B16F10 melanoma cells.

Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea

  • Upadhyaya, Jitendra;Kim, Min-Ji;Kim, Young-Hoi;Ko, Sung-Ryong;Park, Hee-Won;Kim, Myung-Kon
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.105-112
    • /
    • 2016
  • Background: Minor saponins or human intestinal bacterial metabolites, such as ginsenosides Rg3, F2, Rh2, and compound K, are more pharmacologically active than major saponins, such as ginsenosides Rb1, Rb2, and Rc. In this work, enzymatic hydrolysis of ginsenoside Rb1 was studied using enzyme preparations from cultured mycelia of mushrooms. Methods: Mycelia of Armillaria mellea, Ganoderma lucidum, Phellinus linteus, Elfvingia applanata, and Pleurotus ostreatus were cultivated in liquid media at $25^{\circ}C$ for 2 wk. Enzyme preparations from cultured mycelia of five mushrooms were obtained by mycelia separation from cultured broth, enzyme extraction, ammonium sulfate (30-80%) precipitation, dialysis, and freeze drying, respectively. The enzyme preparations were used for enzymatic hydrolysis of ginsenoside Rb1. Results: Among the mushrooms used in this study, the enzyme preparation from cultured mycelia of A. mellea (AMMEP) was found to convert ginsenoside Rb1 into compound K with a high yield, while those from G. lucidum, P. linteus, E. applanata, and P. ostreatus produced remarkable amounts of ginsenoside Rd from ginsenoside Rb1. The enzymatic hydrolysis pathway of ginsenoside Rb1 by AMMEP was $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$ compound K. The optimum reaction conditions for compound K formation from ginsenoside Rb1 were as follows: reaction time 72-96 h, pH 4.0-4.5, and temperature $45-55^{\circ}C$. Conclusion: AMMEP can be used to produce the human intestinal bacterial metabolite, compound K, from ginsenoside Rb1 with a high yield and without food safety issues.

Influences of Fusurium sozani and Phytophthoya cactorum on the Changes in Saponin Components of Korean Ginseng (Panax ginseng C.A. Meyer) (Fusarium solani와 Phytophlhora cactorum이 고려인삼의 사포닌 성분변화에 미치는 영향)

  • 조대휘;오승환
    • Journal of Ginseng Research
    • /
    • v.10 no.1
    • /
    • pp.66-75
    • /
    • 1986
  • Influnces of Fuiarium solani and Phytophthora cactorum infection on the changes in saponin components of Korean ginseng (Panax ginseng C.A. Meyer)roots and some of the biology of those fungi in relation to ginseng root were investigated. Mycelial growth of F. solani was decreased as increasing concentration of the water extracts of fresh ginseng roots, while that of P. cactorum was increased as increasing the concentration of the water extracts and crude saponin. Mycelial growth of F. solani, however, was increased as increasing concentration of crude ginseng saponin upto 20 ppm, while it was tended to be decreased when the concentration was higher than 50 ppm. Nystatin also suppresed the growth of F. solani as increasing its concentration, but it did not affected on the growth of p. cactorum. Ginsenoside Ra and Ro components were not detected in ginseng roots inoculated with F. solani or P. cactorum. Panaxadiol gisenosides were increased by 3.0%, whereas panaxatriol ginsenosides were decreased by 34.9% in ginseng roots inoculated with F. iolani. In ginseng roots inoculated with P. cactorum panaxadiol ginsenosides were increased by 21.1%, but panaxatriol ginsenosides were decreased by 23.5%. PD/PT ratio in ginseng roots inoculated with F. solani or P. cactorum were equally increased by 58.4% in spite of differences in the change of panaxadiol and panaxatriol ginsenosides. The total saponin components of ginseng roots inoculated with F. solani or P. cactorum were decreased by 17.8% and 2.5%, respectively.

  • PDF

Conversion of Ginsenoside Rd to Compound K by Crude Enzymes Extracted from Lactobacillus brevis LH8 (Lactobacillus brevis LH8이 생산하는 효소에 의한 Ginsenoside Rd의 Compound K로의 전환)

  • Quan, Lin-Hu;Liang, Zhiqi;Kim, Ho-Bin;Kim, Se-Hwa;Kim, Se-Young;Noh, Yeong-Deok;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • Ginsenosides have been regarded as the principal components responsible for the pharmacological and biological activities of ginseng. Absorption of major ginsenosides from the gastrointestinal tract is extremely low, when ginseng is orally administered. In order to improve absorption and its bioavailability, conversion of major ginsenosides into more active minor ginsenoside is very much required. Here, we isolated lactic acid bacterium (Lactobacillus brevis LH8) having ${\beta}-glucosidase$ activity from Kimchi. Bioconversion ginsenoside Rd by this bacterium in different temperatures was investigated. The maximum activities of crude enzymes precipitated by ethanol were shown in $30^{\circ}C$ and then gradually decreased. In order to compare the effect of pH, the crude enzymes of L. brevis LH8 were mixed in 20mM sodium phosphate buffer (pH 3.5 to pH 8.0) and reacted ginsenoside Rd. Ginsenoside Rd was almost hydrolyzed between pH 6.0 and pH 12.0, but not hydrolyzed under pH 5.0 and above pH 13.0. Ginsenoside Rd was hydrolyzed after 48 h incubation, whereas ginsenoside F2 appeared from 48 h to 72 h, and ginsenoside Rd was almost converted into compound K after 72 h.

Conversion of Ginsenosides by 9 Repetitive Steamings and Dryings Process of Korean Ginseng Root and Its Inhibition of BACE-1 Activity (인삼의 구증구포에 의한 Ginsenoside의 성분변화 및 BACE-1 억제효과)

  • Kim, Do-Wan;Kim, Yu-Jin;Lee, Yun-Jin;Min, Jin-Woo;Kim, Se-Young;Yang, Deok-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1557-1561
    • /
    • 2008
  • Red ginseng possibly has new ingredients converted during steaming and dry process from fresh ginseng. Kujeungkupo method which means 9 repetitive steamings and dryings process was used for the production of red ginseng from 6-year old ginseng roots. Saponin was extracted from each red ginseng produced at the 1st, 3rd, 5th, 7th, and 9th during the steaming and drying treatment, and we analyzed saponin content with TLC. Minor saponins, such as ginsenoside-Rg3, -Rh2, compound K, and F2, increased as the process time of steaming and drying, but major saponins (ginsenoside-Rb1, -Rb2, -Rc, -Rd, -Re, -Rf, -Rg1) were decreased. Major saponins were yet observed almost at the 1st process, then degraded as the increasing time of steaming and drying process. Especially, ginsenoside-Re and -Rg were observed as considerable amount after the 1st treatment, but there were no trace of them after the 9th treatment. Ginsenoside-Rg1, -Rb2, and -Rb1 were also reduced remarkedly by 96.6%, 96%, and 92.3%, respectively. Minor saponins were increased significantly, especially for ginsenoside-Rg3 and ginsenoside-F2. These results suggest that Kujeungkupo method is the very useful method for the production of minor ginsenoside-Rg3 and -Rh2.

Microbial conversion of major ginsenosides in ginseng total saponins by Platycodon grandiflorum endophytes

  • Cui, Lei;Wu, Song-quan;Zhao, Cheng-ai;Yin, Cheng-ri
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.366-374
    • /
    • 2016
  • Background: In this study, we screened and identified an endophyte JG09 having strong biocatalytic activity for ginsenosides from Platycodon grandiflorum, converted ginseng total saponins and ginsenoside monomers, determined the source of minor ginsenosides and the transformation pathways, and calculated the maximum production of minor ginsenosides for the conversion of ginsenoside Rb1 to assess the transformation activity of endophyte JG09. Methods: The transformation of ginseng total saponins and ginsenoside monomers Rb1, Rb2, Rc, Rd, Rg1 into minor ginsenosides F2, C-K and Rh1 using endophyte JG09 isolated by an organizational separation method and Esculin-R2A agar assay, as well as the identification of transformed products via TLC and HPLC, were evaluated. Endophyte JG09 was identified through DNA sequencing and phylogenetic analysis. Results: A total of 32 ${\beta}$-glucosidase-producing endophytes were screened out among the isolated 69 endophytes from P. grandiflorum. An endophyte bacteria JG09 identified as Luteibacter sp. effectively converted protopanaxadiol-type ginsenosides Rb1, Rb2, Rc, Rd into minor ginsenosides F2 and C-K, and converted protopanaxatriol-type ginsenoside Rg1 into minor ginsenoside Rh1. The transformation pathways of major ginsenosides by endophyte JG09 were as follows: $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}C-K$; $Rb2{\rightarrow}C-O{\rightarrow}C-Y{\rightarrow}C-K$; $Rc{\rightarrow}C-Mc1{\rightarrow}C-Mc{\rightarrow}C-K$; $Rg1{\rightarrow}Rh1$. The maximum production rate of ginsenosides F2 and C-K reached 94.53% and 66.34%, respectively. Conclusion: This is the first report about conversion of major ginsenosides into minor ginsenosides by fermentation with P. grandiflorum endophytes. The results of the study indicate endophyte JG09 would be a potential microbial source for obtaining minor ginsenosides.

Ginsenoside F4 inhibits platelet aggregation and thrombus formation by dephosphorylation of IP3RI and VASP

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.93-100
    • /
    • 2019
  • The root of Panax ginseng is used in ethnomedicine throughout eastern Asia and various recent studies have proved that Panax ginseng has inhibitory effects on cardiovascular disease. Each factor causing cardiovascular disease is known to have a very complex process which is achieved by a diverse number of mechanisms. Among these factors, platelets are the most important because they directly participate in thrombogenesis. Therefore, inhibiting the activity of platelets is an essential element for prevention of cardiovascular diseases. Our previous study showed the antiplatelet effects of Korean red ginseng extract and two of its components, ginsenoside Rg3 and ginsenoside Ro. However, the inhibitory mechanism of other ginsenosides remains unclear. Therefore, we investigated the inhibitory mechanism of ginsenoside F4 (G-F4) from Korean red ginseng on the regulation of signaling molecules involved in human platelet aggregation. With the use of G-F4, collagen-induced human platelet aggregation was inhibited in a dose-dependent manner, and it suppressed collagen-induced elevation of $[Ca^{2+}]_i$ mobilization through elevated phosphorylation of inositol 1, 4, 5-triphosphate receptor I ($Ser^{1756}$). In addition, G-F4 inhibited fibrinogen binding to ${\alpha}IIb/{\beta}_3$ during collagen-induced human platelet aggregation. Thus, in the present study, G-F4 showed an inhibitory effect on human platelet activation, suggesting its potential use as a new natural medicine for preventing platelet-mediated cardiovascular diseases.