• Title/Summary/Keyword: ginseng root culture

Search Result 173, Processing Time 0.026 seconds

Antibacterial and antifungal effects of Korean propolis against ginseng disease

  • Kim, Sung-Kuk;Woo, Soon Ok;Han, Sang Mi;Bang, Kyeong Won;Kim, Se Gun;Choi, Hong Min;Moon, Hyo Jung;Lee, Sung-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.39 no.2
    • /
    • pp.82-85
    • /
    • 2019
  • We investigated the anti-microbial activity of propolis against the pathogenic bacteria and fungi on ginseng. We selected six microbials that caused postharvest root rots in ginseng. Propolis extracts were prepared by using the ethanol extraction method. We seeded the bacteria and fungi related to ginseng disease on a specific culture medium, and treated it with propolis extracts by using the paper disc method. Propolis extracts indicate the anti-microbial activity against Paenibacillus polymyxa, Fusarium solani, Rhizoctonia solani AG-1 and Pythium ultimum. However, the anti-fungal activity of propolis is weak on Pseudomonas fluorescens subsp. Cellulosa and Colletotrichum gloeosporioides. As a result, the antimicrobial effects of propolis against microbial that prevent ginseng growth were confirmed. The antimicrobial effects are shown according to the concentration of propolis against root rot. The fungi also showed antibacterial effects in a dose-dependent manner.

PRODUCTION OF GINSENOSIDES THROUGH IN VITRO CULTURE OF GINSENG(Panax ginseng C.A. MEYER)

  • Choi K.T.;Ahn I.O.;Park J.C.
    • Proceedings of the Ginseng society Conference
    • /
    • 1993.09a
    • /
    • pp.143-149
    • /
    • 1993
  • Ginseng root explants and calli induced from selected cell lines were cultured on modified Murashige and Skoog's media supplemented with different concentrations of organic or inorganic compounds and plant growth requlators to clarify the effects of chemical composition and plant growth regulators in the medium on the growth of ginseng calli and the production of ginseng saponin. For optimum growth of calli, the concentrations of 2, 4-D and sucrose were the range of 1 to 3 mg/${\ell}$l and 1 to $3\%,$ respectively. And it was clarified that sucrose, nitrogen, phosphate, calcium, magmesian plant growth regulators and their concentrations influcenced the relative biosynthesis of saponin in tissue cultures of Panax ginseng. The patterns of ginsenosides, pharmacologically useful component, were different among the cell lines and contents of ginsenosides were much higher in selected cell lines than in original cell line.

  • PDF

Current Status of Korean Ginseng Products and Trends in Enhanced Functional Ginseng Products

  • Byungdae Lee;Tae-Eun Kwon;Hoon-Il Oh;Ho-jung Yoon
    • Journal of Ginseng Culture
    • /
    • v.6
    • /
    • pp.13-34
    • /
    • 2024
  • The abolishment of the red ginseng monopoly act by the Korean government in 1996 resulted in a drastic change in the Korean ginseng industry, leading to a significant increase in the market size and consumption of ginseng products. Red ginseng is most popular type, with approximately 74% of harvested fresh ginseng being processed into various red ginseng products. Since 1997, there has been a substantial increase in the cultivation of ginseng for production of red ginseng, which, in turn, has contributed to the proliferation of ginseng processing companies. To investigate the products of ginseng manufacturing businesses, we select 200 companies primarily engaged in ginseng processing or specializing solely in ginseng. Our survey on the status of ginseng industry covered 8 different categories. 1) Root ginseng: There were 66 companies involved in manufacturing red ginseng root, accounting for 33.0% of all surveyed companies. This was followed by black ginseng root with 36 companies (18.0%) and red ginseng fine roots with 22 companies (11%). 2) Red ginseng products: A total of 144 companies were involved in manufacturing red ginseng pouches, making it the most common product category. This was closely followed by 142 companies producing pure(100%) red ginseng extract concentrate. 3) Fermented red ginseng products: Companies producing fermented red ginseng extract concentrate products were the most numerous, totaling 26. Following this, companies producing fermented red ginseng stick and pouch products were next in line. 4) Ginseng products: There were 15 companies involved in the production of ginseng products, with the majority focusing on ginseng tea. 5) Black ginseng products: Companies producing black ginseng extract concentrate were the most numerous, with 31 companies, followed by 26 companies producing black ginseng extract pouches. 6) Taegeuk ginseng products: Only 5 companies were involved in the production of taegeuk ginseng products. 7) Fermented black ginseng, and 8) Ginseng berry products: These categories are manufactured by less than 5 companies each. However, the variety in ginseng berry products suggests the potential for future growth. In the 2000s, a trend emerged with the development of new processed products aimed at enhancing the functional components of red ginseng, and these products have captured the attention of consumers. However, this study primarily focuses on black ginseng, fermented red ginseng/fermented black ginseng, and ginseng berry products as they have exerted a significant influence on the overall ginseng industry.

Research on Ginseng Production During the Past 20 years (인삼재배 분야의 과거 20년 연구)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.20 no.4
    • /
    • pp.472-500
    • /
    • 1996
  • Researches on mineral nutrition, physiology and phyrsiological diseases, . cultivaction methods. brceding. pest control quality management and extension during 1976-1995 in Korea were reviewed Review in brceding and pest control was restricted to the researches directely related to cultivaction. Mineral nulrient up take. partion and varicos factors such as top dreasing. Light intersity etc. and interrelationship between minerals were investigated. Top dressing was not effective due to low minera1 requorement Physiological characteristics on tempelature light and water were well elucidated and applied to assess traditional cultivation method and its inovation. Photosyrnthetic pigments. light harvest proteins and activity of related enzymes were studied. In nitrogen metabolism arginine, praline, ammonium, threonine appeared to have important role in re growth of shoot Saponin metabolism was studied in relation to growth and new ginsenosides were found but physiological role of saponin was not clearly elucidated yet Endogenous growth regulators were reported and various erogenous growth regulators were studied for growth stimulation. short stem and seed pruning etc. Various physiological diseases were investigated for cause and control measures were established. Water culture was little studied Forest culture was studied but not retched the recommendable stage Drip irrigation straw mulching. seasonal shading and soil preparation method including soil fertility adjustment were established for practical application. Shading materials completely changed to polyethylene net and materials of polymers The research on ginseng cultivation in paddy field opened the way to establish the permanent ginseng cultivation plantation Ginseng harvester and seeder were developed in the late 1950s. Transplanted and many other machines were developed in the early 1990s. In ginseng breeding only pure line selection was of practical significance several verities were at the stage of seed propagation at ginseng plantations. Mutation breeding (${\gamma}$-ray. X-ray chemicals) was not successful. The research on plantlet formation through tissue culture was a little progressed but still far behind to vegetative propagation. Disease control research was concentrated in the isolation and identification of pathogans. their ecological charactelistics and biological control and soil humigation. Potato root rot nematodes was found and control method was established. Insect and small animal control research was greatly progresses in identification, ecological investigation, and ecological and physical control. Weed control was less important due to the development of mulching method of ridge and ditch. Quality factors of raw ginseng in relation to red ginseng process were extensively studied. Traditional quality measures were elucidated in accordance with modern analytical chemistry resulting in the importance of peptides in the centrat part rather than ginsenosides For large root production growth promoting rootzone micrcorganisms (PGPRM) were isolated and active compounds were identified. Field test on PGPRM was on going. Varictus methods formality improvement through cultivation were developed. Management research of ginseng production was rare Extension was active throuch official and private organizations and through workshop for the extension specialists, and direct lectures to grower's. Extension services made the researcher to understand the existing problems at grower's fields. Research environment for ginseng production was in prime time only for three years when Korea Ginseng Research Institute was established then gradually aggravated.

  • PDF

The Micrometeorological Requirements for the Culture of Ginseng (Panax sp.) (인삼 (Panax sp.) 재배를 위한 미세기상조건)

  • Proctor John T. A.
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.129-132
    • /
    • 1988
  • Ginseng is cultivated in Korea. Japan. China. the Soviet Union and North America. Studies of the macroclimate of each of these producing areas shows that ginseng has certain requirements for production. In each producing area the microclimate is modified in different ways. Comparisons of recent research data from North America. Korea and China is presented in order to define. more precisely. the various microclimate requirements for ginseng production. These include studies of light interception as influenced by different shade materials. In North America. wood. woven black polypropylene and knitted polyethylene shade are used. whereas in China. dried grasses are bound together in layers with wire and polyvinylchloride is inserted between the layers. The influence of these various shade materials in terms of crop grow1h and root yield are presented. The major effect of temperature seems to be on root growth. During much of the growing season optimum temperatures for root grow1h are not reached. Growth analysis data for different age plants are being used to show the effects of different soil temperature regimes on distribution of dry matter between the shoot and root.

  • PDF

The Antifibrotic and Antioxidant Activities of Hot Water Extract of Adventitious Root Culture of Panax ginseng (ARCP)

  • Lim, Hee-Kyoung;Kim, Youn-Woo;Lee, Dae-Ho;Cho, Somi-Kim;Cho, Moon-Jae
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.78-84
    • /
    • 2007
  • The anti-fibrotic effects of hot water extract of adventitious root culture of Panax ginseng (ARCP) and the possible mechanisms were investigated on $CCl_4-induced$ hepatotoxicity model mice. Fibrosis was induced by a mild treatment of $CCl_4$. Then silymarin as a positive control drug and ARCP or carrier alone as a negative control were treated. Serum GPT, GOT and ALP activity levels were lowered by 25, 21 and 11% for silymarin treated group and by 48, 39 and 14% for ARCP treated group compared to carrier treated alone. Hepatic collagen for ARCP treatment group was reduced by 18% and MDA contents decreased a little more. Pro-fibrotic gene ($TGF-{\beta}1$, TIMP-1 and ${\alpha}-SMA$) expression increased following the $CCl_4$ treatment, but both the silymarin and the ARCP treatments decreased the expressions of these genes by 20% to 50%. The antioxidant effect of ARCP was studied by DPPH free radical scavenging activity. In addition, a generation of reactive oxygen species (ROS) was also reduced in $H_2O_2-treated$ HepG2 cells upon the ARCP treatment. In summary, ARCP has antioxidant property, and can have some protection against oxidative stress; more importantly, ARCP can efficiently protect mice against $CCl_4-induced$ fibrosis.

Optimization of Submerged Culture Conditions for the Growth Increase of Ginseng Adventitious Root Containing Germanium (게르마늄 함유 인삼 부정근의 생장 증대를 위한 액체배양 조건의 최적화)

  • Chang, Eun-lung;Oh, Roon-II
    • Journal of Ginseng Research
    • /
    • v.33 no.2
    • /
    • pp.143-148
    • /
    • 2009
  • This study was carried out to detennine the optimal submerged culture conditions for the growth increase of ginseng adventitious roots containing germanium by means of a fractional factorial design with four factors and three levels, using the response surface methodology (RSM). The ginseng (Panax ginseng CA. Meyer) adventitious roots were induced by plant growth regulators and cultured in a liquid SH medium. The effects of various $GeO_2$ and phosphoric acid ($H_3P0_4$) concentrations in the medium, $GeO_2$ addition time and the pH of the medium on the fresh weight of the ginseng adventitious roots were investigated. The optimum pH of the medium and the phosphoric acid concentration detennined by the partial differentiation of the model equation were 4.7 and 6.0 roM, respectively. The predicted optimal $GeO_2$ concentration was 10 ppm and the $GeO_2$ addition time did not affect the growth of ginseng adventitious roots. Under these conditions, the growth of the ginseng adventitious root containing germanium was predicted to be 2.47 g.

Effects of Aeration Rate and Sparger Type on Growth and Ginsenoside Accumulation in Bioreactor Cultures of Ginseng Adventitious Root(Panax ginseng C.A. Meyer) (생물반응기내의 공기주입량 및 Sparger 형태가 인삼 (Panax ginseng C.A. Meyer) 부정근의 생장과 Ginsenoside 함량에 미치는 영향)

  • Kim Yun-Soo;Hahn Eun-Joo;Shin Cha-Gyun;Paek Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.111-116
    • /
    • 2005
  • The two different ways to supply air inside the bioreactor were examined in the adventitious root cultures of Panax ginseng C.A. Meyer. First, the aeration rate varied at 0.05, 0.1, 0.2 and 0.3 vvm, respectively which were supplied during the whole culture period. Second, the amount of air supply was increased from 0.05 to 0.3 vvm at 10-day intervals in proportion to the root growth. Both the root growth and the ginsenoside accumulation were maximized to 175.8 g dry wt. of root growth and 4.3 mg/g dry wt. of ginsenoside accumulation when the aeration rate was increased gradually. The effect of the sparger pore size (15, 30 and $60\;{\mu}m$) in the bioreactor was also investigated, which suggested the greatest root growth (175.9 g dry wt.) in the $15{\mu}m$-sized sparger and the highest ginsenoside content (4.3 mg/g dry wt.) in the $60\;{\mu}m$ size. Finally, the diameter of a sparger ($15\;{\mu}m$-sized) varied at 1.5, 3.0, 5.0 and 8.0 cm, respectively. The highest root growth (191.9 g dry wt.) and the ginsenoside content (4.9 mg/g dry wt.) were obtained in the sparger diameter of 8.0 cm.

Effective Purification of Ginsenosides from Cultured Wild Ginseng Roots, Red Ginseng, and White Ginseng with Macroporous Resins

  • Li, Huayue;Lee, Jae-Hwa;Ha, Jong-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1789-1791
    • /
    • 2008
  • This study was aimed (i) to develop an effective method for the purification of ginsenosides for industrial use and (ii) to compare the distribution of ginsenosides in cultured wild ginseng roots (adventitious root culture of Panax ginseng) with those of red ginseng (steamed ginseng) and white ginseng (air-dried ginseng). The crude extracts of cultured wild ginseng roots, red ginseng, and white ginseng were obtained by using a 75% ethanol extraction combined with ultrasonication. This was followed sequentially by AB-8 macroporous adsorption chromatography, Amberlite IRA 900 Cl anion-exchange chromatography, and Amberlite XAD16 adsorption chromatography for further purification. The contents of total ginsenosides were increased from 4.1%, 12.1%, and 11.3% in the crude extracts of cultured wild ginseng roots, red ginseng, and white ginseng to 79.4%, 71.7%, and 72.5% in the final products, respectively. HPLC analysis demonstrated that ginsenosides in cultured wild ginseng roots were distributed in a different ratio compared with red ginseng and white ginseng.