• Title/Summary/Keyword: ginseng components

Search Result 747, Processing Time 0.032 seconds

Changes of Volatile Component Contents in a Red Ginseng Tail Root by Puffing (팽화처리에 의한 홍미삼의 휘발성 성분의 변화)

  • Han, Chan-Kyu;Choi, Sang-Yoon;Kim, Sung-Soo;Sim, Gun-Sub;Shin, Dong-Bin
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.311-314
    • /
    • 2008
  • This study evaluated changes in concentrations of volatile compounds contained in red ginseng tail roots through puffing treatment. The results showed that 59 out of 63 volatile compounds were detected from the puffing treated roots. While most terpene and furan compounds seem to be increased by puffing treatment, most alcoholic, aldehyde and acid compounds seem to be decreased, and terpene compounds content accounted for 70% of the 63 volatile components in the puffed red ginseng tail roots.

Studies on the Lipid Components of Various Ginsengs 1. lipid and Fatty Acid Compositions of the Free Lipids (각국 인삼의 지방질성분에 관한 연구 제1보, 유리 지방질중의 지방질 및 지방산 조성)

  • Choe, Gang-Ju;Kim, Man-Uk;Kim, Dong-Hun
    • Journal of Ginseng Research
    • /
    • v.9 no.2
    • /
    • pp.193-203
    • /
    • 1985
  • Lipid and fatty acid compositions of the free lipids in Panax ginseng (Korea, Japan and China), Panax quinquefolium (America, Canada) and Panax notoginseng (China) were studied by means of silicic acid column chromatography, thin-layer chromatography and gas-liquid chromatography. Free lipid contents were 1.13 to 1.24% in panax ginseng and 0.87 to 1.18% in Panax quinquefolium and 0.39% in panax notoginseng. Neutral lipid fractions were 81.2 to 84.4%, while glycolipid fractions 8.01% to 14.47% and phospholipid fractions 3.49 to 5.74% in free lipid contents. The major components were triglycerides, free sterols, diglyceride, free fatty acids and sterol esters in neutral lipid fractions, sterol glucoside, monogalactosyl diglyceride, digalactosyl diglyceride, esterified steryl glucoside in glycolipid fractions and phosphatidyl glycerol, phosphatide, ethanolamine, phosphatidyl choline in phospholipid fractions. The contents and compositions of neutral lipids and glyclipids were some different among various ginsengs, whereas phospholipids showed relatively similar compositions in the contents. Seventeen fatty acids were analyzed in the four free lipid fractions from the various ginsengs and the main fatty acids were linoleic acid, palmitic acid, oleic acid and linolenic acid. It was found that the amounts of some fatty acids were different among the various ginsengs, but the fatty acid patterns of these ginsengs were on the whole similar.

  • PDF

Identification and Changes of Physiologically Active Substances During Chilling Storage of Dehisced Ginseng Seeds (저온저장중 개갑인삼종자내의 생리활성물질 동정 및 변화)

  • Kwon, Woo-Saeng;Baek, Nam-In;Lee, Jung-Myung
    • Journal of Ginseng Research
    • /
    • v.21 no.1
    • /
    • pp.13-18
    • /
    • 1997
  • Identification and changes of physiologically active substances during chilling storage of dehisced ginseng (Panax ginseng C. A. Meyer) seeds were analyzed using various preparatory separation methods and purification columns; Dowex 50W and silica gel columns. Seven components with Rf values of 0.20, 0.40, 0.58, 0.66, and 0.70 In solvent system, $CHCl_3$:MeOH=3:1 (v/v), Rf values of 0. 63 and 0.74 in solvent system, $CHCl_3$:MeOH:$H_2O$:=7:3:1 (v/v) were obtained through Dowex 50W and silica gel column chromatographies. Two components with Rf values of 0.20 and 0.63 in the all chilling treatments were detected in the extract obtained through both chromatographies, and only the former component was gradually increased till 4 weeks of chilling storage and then rapidly decreased from 8 to 16 weeks. UV spectra of Rf values of 0.66 and 0.56 were similar to that of cytokinin, but their physiological activities were not found. Rf values of 0.20 showed activity by radish cotyledon expansion bioassay. The component with Rf value of 0.20 was revealed to have a naphthalene in the proposed chemical structure by various NMR techniques.

  • PDF

Characteristic study on the chemical components of Korean curved ginseng products

  • Cho, Chang-Won;Kim, Young-Chan;Kang, Jin-Hee;Rhee, Young Kyoung;Choi, Sang Yoon;Kim, Kyung-Tack;Lee, Young-Chul;Hong, Hee-Do
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.349-354
    • /
    • 2013
  • Dried ginseng (DG) is in fact the representing ginseng product in the worldwide market. Although it is made in various packages depending on the processing method, size and age of DG, basic scientific data reporting the chemical components are limited. In this study, 4-year-old curved ginseng (CG), one of the domestic DG products, was selected for further investigation. Eighty-six samples of 30 and 50 piece-grade CG, which are the most widely distributed in the market, were collected for 5 yr. Their major components, such as moisture, total sugar, acidic polysaccharides, total phenolic compounds, and saponins, were analyzed to figure out the standard quality characteristics. The moisture content of all CG samples was less than 15%. The total water-soluble sugar contents were 22.9% to 47.8% and 23.2% to 49.5% in the 30 and 50 piece-grade CG, respectively. The acidic polysaccharide contents were 3.6% to 6.7% and 2.9% to 6.9% in the 30 and 50 piece-grade CG, respectively. The total phenolic compound content was 0.4% to 0.5% in CG, regardless of the piece-grade. The crude saponin content, which represents the active component of ginseng, was over 2% in all samples. In 30 piece-grade CG samples, the contents of major ginsenosides, Rb1, Rf, and Rg1, were 2.2 to 4.7 mg/g, 0.4 to 1.3 mg/g, and 1.6 to 4.0 mg/g, respectively. The ginsenoside contents in 50 piece-grade CG samples were 2.1 to 3.9 mg/g (Rb1), 0.5 to 1.2 mg/g (Rf), and 1.3 to 3.4 mg/g (Rg1). Overall, since there were relatively high standard deviation and coefficient of variation in all the chemical component contents that were assessed, we found some difficulties in showing the CG standard chemical component characteristics by average, standard deviation, and other statistical analysis factors.

Effects of Non-saponin Red Ginseng Components on the Function of Brain Cells

  • Sohn, Eun-Hwa;Do, Hang;Kang, Nam-Sung;Jang, Seon-A;Park, Sul-Kyung;Lee, Hye-Rim;Rhee, Dong-Kwon;Pyo, Suhk-Neung
    • Journal of Ginseng Research
    • /
    • v.32 no.1
    • /
    • pp.62-66
    • /
    • 2008
  • Non-saponin gingseng fraction components (NSRG) have been known to have a variety of biological activity. However, the effects of these components on the function of brain cell have not been characterized in detail. In this study, we investigated the preventive effect of non-saponin red ginseng components on acrylamide (ACR)-induced suppression of neural cell adhesion molecule (NCAM), which is highly expressed in neuronal cells. The data showed that NSRG blocked the suppression of NCAM expression by ACR in neuroblastoma cells (SK-N-SH). In addition, NSRG significantly increased NCAM expression in ACR-nontreated neuroblastoma cells. NSRG treatment resulted in the increase of cell proliferation in a concentration-dependent manner. We also examined whether NSRG could modulate the NO production of astrocytes. When glioma cells (C6) were treated with various concentrations of NSRG (100-300 ug/ml) in the presence or absence of $IFN-{\gamma}$ for 24 hours, NO production was suppressed in $IFN-{\gamma}-$stimulated C6 cells. Taken together, these results demonstrate that treatment of brain cells with NSRG results in the enhancement of proliferation, the suppression of NO production and the protective effect on NCAM expression impaired by ACR. Thus, the present data suggest that NSRG has proliferative and neuroprotective effects and these effects could be useful in neuronal diseases.

The effects of Korean Red Ginseng-derived components on oligodendrocyte lineage cells: Distinct facilitatory roles of the non-saponin and saponin fractions, and Rb1, in proliferation, differentiation and myelination

  • Lee, Ahreum;Kwon, Oh Wook;Jung, Kwi Ryun;Song, Gyun Jee;Yang, Hyun-Jeong
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.104-114
    • /
    • 2022
  • Background: Abnormalities of myelin, which increases the efficiency of action potential conduction, are found in neurological disorders. Korean Red Ginseng (KRG) demonstrates therapeutic efficacy against some of these conditions, however effects on oligodendrocyte (OL)s are not well known. Here, we examined the effects of KRG-derived components on development and protection of OL-lineage cells. Methods: Primary OL precursor cell (OPC) cultures were prepared from neonatal mouse cortex. The protective efficacies of the KRG components were examined against inhibitors of mitochondrial respiratory chain activity. For in vivo function of Rb1 on myelination, after 10 days of oral gavage into adult male mice, forebrains were collected. OPC proliferation were assessed by BrdU incorporation, and differentiation and myelination were examined by qPCR, western blot and immunocytochemistry. Results: The non-saponin promoted OPC proliferation, while the saponin promoted differentiation. Both processes were mediated by AKT and extracellular regulated kinase (ERK) signaling. KRG extract, the saponin and non-saponin protected OPCs against oxidative stress, and both KRG extract and the saponin significantly increased the expression of the antioxidant enzyme. Among 11 major ginsenosides tested, Rb1 significantly increased OL membrane size in vitro. Moreover, Rb1 significantly increased myelin formation in adult mouse brain. Conclusion: All KRG components prevented OPC deaths under oxidative stress. While non-saponin promoted proliferation, saponin fraction increased differentiation and OL membrane size. Furthermore, among all the tested ginsenosides, Rb1 showed the biggest increase in the membrane size and significantly enhanced myelination in vivo. These results imply therapeutic potentials of KRG and Rb1 for myelin-related disorders.

Pharmacological Action of Ginseng (인삼의 약리작용)

  • 홍사악;임정규;박찬웅;차인준
    • Journal of Ginseng Research
    • /
    • v.3 no.1
    • /
    • pp.66-93
    • /
    • 1979
  • Panax ginseng C. A. Meyer, which has been known for more than EWO years. occupies a Particular prince in folk medicine as so called tonic remedy. The pharmacolgical investigations of ginseng, based on the scientific concepts and methodology, have been performed by many researchers through the past 50∼60 years at different parts of the world. The pharmacological action of Panax ginseng compiled from the numerous reports can be summarized as follows: 1. On central nervous system, the effect of Panax ginseng is timulatory in smaller doses and somewhat depressive in larger doses. From the psychopharmacological aspect, ginseng seems to increase the mental efficiency of man. 2. Ginseng has the effect tending to Protect organism from various physical and chemical stresses. 3. The growth and basal metabolic rates of experimental animals are stimulated by ginseng. Ginseng also prolongs the survival time of animals under adverse influences. 4. Increasing the physical and mental efficiency, ginseng postpones the onset of fatigue and increases the working capacities. 5. In the case of the intravenous administration of ginseng, a transitory and slight hypotensive effect is observed. These hypotensive effects seems to include that of a direct action and actions related to the release of histamine and/or serotonin by ginseng. 6. It is Presumed that ginseng lowers the elevated bleed ingar and cholesterol level. 7. Ginseng tends to increase the gastrointestinal motizity and tone 8. It is presumed that ginseng Promotes the iron metabolism and activates the hematopoietic factors. 9. Ginseng tends to stimulate the biosynthesis of nucleic acid and release of histamine and serotonin. 10. The toxicity end adverse reactions of ginseng appear to be nothing that warrants apprehension. 11. Anticancer erects of ginseng seem to be due to indirect action rather than direct action on cancer cell, by improving the host condition 12. Recent clinical trials of ginseng harts obtained sent good results, but Present trial is still limited in its range, so it is necessary to broaden the scope of trial covering many kinds of organs and diseases. From the above, although it appears that substantial advancements have been achieved in the studies on the Pharmacological actions of Panax ginseng there are many discrepancies noticed in the reported data. Furthermore the precise mechanisms of actions of ginseng are sometimes obscure, even unknown in other actions as the students stand now. The main reasons for this are considered to be that even though saponin has been identified at one of the active substances of ginseng, other components have not fully been identified and that the experimental approaches of the investigations varied with different researchers. Thus a thorough analysis of the chemical components and newer standardized concepts and metohds appear to be the pre-requisites for further study of the pharmacolgical effects and mechaisms of Panax ginseng.

  • PDF

Quality and antioxidant activity of ginseng seed processed by fermentation strains

  • Lee, Myung-Hee;Lee, Young-Chul;Kim, Sung-Soo;Hong, Hee-Do;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.178-182
    • /
    • 2015
  • Background: Fermentation technology is widely used to alter the effective components of ginseng. This study was carried out to analyze the characteristics and antioxidant activity of ginseng seeds fermented by Bacillus, Lactobacillus, and Pediococcus strains. Methods: For ginseng seed fermentation, 1% of each strainwas inoculated on sterilized ginseng seeds and then incubated at $30^{\circ}C$ for 24 h in an incubator. Results: The total sugar content, acidic polysaccharides, and phenolic compounds, including p-coumaric acid, were higher in extracts of fermented ginseng seeds compared to a nonfermented control, and highest in extracts fermented with B. subtilis KFRI 1127. Fermentation led to higher antioxidant activity. The 2,2'-azine-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity was higher in ginseng seeds fermented by Bacillus subtilis than by Lactobacillus and Pediococcus, but Superoxide dismutase (SOD) enzyme activity was higher in ginseng seeds fermented by Lactobacillus and Pediococcus. Conclusion: Antioxidant activities measured by ABTS and SOD were higher in fermented ginseng seeds compared to nonfermented ginseng seeds. These results may contribute to improving the antioxidant activity and quality of ginseng subjected to fermentation treatments.

Effects of Decontamination Treatments on Chemical Components of Panax Ginseng-Leaf Tea (살균처리가 인삼엽록차의 화학성분에 미치는 영향)

  • Kwon, Joong-Ho;Byun, Myung-Woo;Choi, Kang-Ju;Kwon, Dae-Won;Cho, Han-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.65-69
    • /
    • 1992
  • The comparative effects of ethylene oxide(EO) fumigation and gamma irradiation (5 kGy) were determined on the chemical components of exportable ginseng-leaf tea which is required for improving the hygienic quality. Saponins and fatty acids detected in the samples were found to be resistant to both treatments at the practical levels. In an experiment on free sugar and amino acids, however, quantitative analysis has shown that glucose, lysine and histidine in the samples are significantly decreased by EO fumigation (p<0.05) and that negligible changes were observed in gamma-irradiated samples.

  • PDF

Studies on the Effect of Korean Ginseng Components on Alcoholic Fermentation by Yeast. 2. Effect on the production of higher alcohols. (인삼성분이 효모의 Alcohol 배양에 미치는 영향 2. 고급 Alcohol 생성에 미치는 영향)

  • Park, Se-Ho;Yu, Tae-Jong;Lee, Seok-Geon
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.148-154
    • /
    • 1981
  • The effect of ginseng extracts and ginseng saponins on alcoholic fermentation and production of higher alcohols in malt wort by Sacch. uvarnm were studied The results otained were as follows. 1. Alcoholic fermentation of the wort contained 1-5% of ginseng extracts was inhibited slightly, but the wort contained 0.1-0.5% of ginseng extracts were same as the control. 2. 0.02-0.2% of saponin stimulated alcoholic fermentation. 3. Higher alcohol contents were decreased when the wort contained 0.1-0.5% of ginseng extracts. 4. Higher alcohol content were increased when the wort contained 0.02-0.2% of ginseng saponin. Iso-amylalcohol content of fermented wort which contained ginseng saponins were higher 18 -35mg/1 than those of control.

  • PDF