• 제목/요약/키워드: ginseng breeding

검색결과 105건 처리시간 0.035초

Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars

  • Jayakodi, Murukarthick;Lee, Sang-Choon;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.572-579
    • /
    • 2019
  • Background: Panax ginseng has been used in traditional medicine to strengthen the body and mental well-being of humans for thousands of years. Many elite ginseng cultivars have been developed, and ginseng cultivation has become well established during the last century. However, heat stress poses an important threat to the growth and sustainable production of ginseng. Efforts have been made to study the effects of high temperature on ginseng physiology, but knowledge of the molecular responses to heat stress is still limited. Methods: We sequenced the transcriptomes (RNA-Seq) of two ginseng cultivars, Chunpoong (CP) and Yunpoong (YP), which are sensitive and resistant to heat stress, respectively, after 1- and 3-week heat treatments. Differential gene expression and gene ontology enrichment along with profiled chlorophyll contents were performed. Results: CP is more sensitive to heat stress than YP and exhibited a lower chlorophyll content than YP. Moreover, heat stress reduced the chlorophyll content more rapidly in CP than in YP. A total of 329 heat-responsive genes were identified. Intriguingly, genes encoding chlorophyll a/b-binding proteins, WRKY transcription factors, and fatty acid desaturase were predominantly responsive during heat stress and appeared to regulate photosynthesis. In addition, a genome-wide scan of photosynthetic and sugar metabolic genes revealed reduced transcription levels for ribulose 1,5-bisphosphate carboxylase/oxygenase under heat stress, especially in CP, possibly attributable to elevated levels of soluble sugars. Conclusion: Our comprehensive genomic analysis reveals candidate loci/gene targets for breeding and functional studies related to developing high temperature-tolerant ginseng varieties.

인삼 품종과 육성계통의 작물학적 특성 변이 (Variations of Agronomic Characteristics of Cultivars and Breeding Lines in Korean Ginseng (Panax ginseng C. A. Mey.))

  • 방경환;서아연;김영창;조익현;김장욱;김동휘;차선우;조용구;김홍식
    • 한국약용작물학회지
    • /
    • 제20권4호
    • /
    • pp.231-237
    • /
    • 2012
  • These studies were conducted to provide basic information on Korean ginseng cultivars and breeding lines (Panax ginseng C. A. Mey.) and to identify the variations that can be utilized in ginseng breeding programs. The agronomic characteristics was used to clarify the genetic relationships among Korean ginseng cultivars and breeding lines and to classify them into distinct genetic groups. Angle of petiole and number of fibrous root showed a wide variation from $15.0{\sim}67.8^{\circ}$ and 0~5, respectively. The average plant length was 54.2cm with a range of 37.9~64.8cm and the average stem diameter was 5.6mm with a range of 4.0~7.5mm. The average stem length was 31.9cm with a range of 21.8~37.9cm and the average root weight was 38.1 g with a range of 23.0~52.0 g. The 24 Korean ginseng cultivars and breeding lines were classified into 4 groups based on agronomic characteristics using the complete linkage cluster analysis. The I, II, III and IV groups included the 60.8%, 7.4%, 13.1% and 8.7% of the cultivars and breeding lines, respectively. The breeding lines in group I could be characterized as the group with the highest growth characters and yield components, such as plant length, stem diameter and root weight. The root weight, the yield component, had highly significant positive correlations with stem diameter, plant length and stem length.

인삼 신품종 연풍의 육성경과 및 생육특성 (Breeding Process and Characteristics of Yunpoong, a New Variety of Panax ginseng C.A. Meyer)

  • 권우생;이명구;최광태
    • Journal of Ginseng Research
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2000
  • To develop a new ginseng variety with good quality and high yielding, a lot of individual ginseng plant were selected in the farmers′ fields in 1968. Among them, a promising line, 680-98-2, has been developed through comparative cultivation of several lines selected with pure line separation from local races in Korea Ginseng & Tobacco Research Institute. Preliminary and advanced yield trials were performed for 8 years. 1) One of them was designated as KG102 and it was then registered as a new variety "Yunpoong" with the regional yield and adaptation trials for 10 years (1981-1990) on November 30, 1998 in Korea.2) For the root characters, the diameter of taproot and ratio of the taproot length to the diameter of Yunpoong were bigger and lower than those of Jakyungiong. Root yield was 27.3% higher in Yunpoong than Jakyungiong.

  • PDF

차세대염기서열 분석을 이용한 고려인삼과 미국삼의 전사체 분석 (Characterization of Root Transcriptome among Korean Ginseng Cultivars and American Ginseng using Next Generation Sequencing)

  • 조익현;김영창;이승호;김장욱;김선태;현동윤;김동휘;김기홍;김홍식;정종욱;방경환
    • 한국약용작물학회지
    • /
    • 제22권5호
    • /
    • pp.339-348
    • /
    • 2014
  • The transcriptomes of four ginseng accessions such as Cheonryang (Korean ginseng cultivar), Yunpoong (Korean ginseng cultivar), G03080 (breeding line of Korean ginseng), and P. quinquefolius (American ginseng) was characterized. As a result of sequencing, total lengths of the reads in each sample were 156.42 Mb (Cheonryang cultivar), 161.95 Mb (Yunpoong cultivar), 165.07 Mb (G03080 breeding line), and 166.48 Mb (P. quinquefolius). Using a BLAST search against the Phytozome databases with an arbitrary expectation value of 1E-10, over 20,000 unigenes were functionally annotated and classified using DAVID software, and were found in response to external stress in the G03080 breeding line, as well as in the Cheonryang cultivar, which was associated with the ion binding term. Finally, unigenes related to transmembrane transporter activity were observed in Cheonryang and P. quinquefolius, which involves controlling osmotic pressure and turgor pressure within the cell. The expression patterns were analyzed to identify dehydrin family genes that were abundantly detected in the Cheonryang cultivar and the G03080 breeding line. In addition, the Yunpoong cultivar and P. quinquefolius accession had higher expression of heat shock proteins expressed in Ricinus communis. These results will be a valuable resource for understanding the structure and function of the ginseng transcriptomes.

Evidence of genome duplication revealed by sequence analysis of multi-loci expressed sequence tagesimple sequence repeat bands in Panax ginseng Meyer

  • Kim, Nam-Hoon;Choi, Hong-Il;Kim, Kyung Hee;Jang, Woojong;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제38권2호
    • /
    • pp.130-135
    • /
    • 2014
  • Background: Panax ginseng, the most famous medicinal herb, has a highly duplicated genome structure. However, the genome duplication of P. ginseng has not been characterized at the sequence level. Multiple band patterns have been consistently observed during the development of DNA markers using unique sequences in P. ginseng. Methods: We compared the sequences of multiple bands derived from unique expressed sequence tagsimple sequence repeat (EST-SSR) markers to investigate the sequence level genome duplication. Results: Reamplification and sequencing of the individual bands revealed that, for each marker, two bands around the expected size were genuine amplicons derived from two paralogous loci. In each case, one of the two bands was polymorphic, showing different allelic forms among nine ginseng cultivars, whereas the other band was usually monomorphic. Sequences derived from the two loci showed a high similarity, including the same primer-binding site, but each locus could be distinguished based on SSR number variations and additional single nucleotide polymorphisms (SNPs) or InDels. A locus-specific marker designed from the SNP site between the paralogous loci produced a single band that also showed clear polymorphism among ginseng cultivars. Conclusion: Our data imply that the recent genome duplication has resulted in two highly similar paralogous regions in the ginseng genome. The two paralogous sequences could be differentiated by large SSR number variations and one or two additional SNPs or InDels in every 100 bp of genic region, which can serve as a reliable identifier for each locus.

Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers

  • Nguyen, Van Binh;Giang, Vo Ngoc Linh;Waminal, Nomar Espinosa;Park, Hyun-Seung;Kim, Nam-Hoon;Jang, Woojong;Lee, Junki;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.135-144
    • /
    • 2020
  • Background: Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P. quinquefolius and P. trifolius) from North America and five (P. ginseng, P. notoginseng, P. japonicus, P. vietnamensis, and P. stipuleanatus) from Asia. Methods: We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. Results: We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. Conclusion: The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.

Characteristics of Korean ginseng varieties of Gumpoong, Sunun, Sunpoong, Sunone, Cheongsun, and Sunhyang

  • Lee, Jang-Ho;Lee, Joon-Soo;Kwon, Woo-Saeng;Kang, Je-Yong;Lee, Dong-Yun;In, Jun-Gyo;Kim, Yun-Soo;Seo, Jiho;Baeg, In-Ho;Chang, Il-Moo;Grainger, Keith
    • Journal of Ginseng Research
    • /
    • 제39권2호
    • /
    • pp.94-104
    • /
    • 2015
  • Background: Ginseng (Panax ginseng Meyer) is an important medicinal herbs in Asia. However, ginseng varieties are less developed. Method: To developed ginseng varieties, a pure line selection method was applied in this study. Results: Gumpoong was testing of 4-yr-old specimens in 2002, the proportions of the below-ground roots that were rusty colored for Gumpoong was 1.29 in Daejeon and 1.45 in Eumseong, whereas the proportions for its yellow berry variant were 2.60 and 2.45 in the two regions, respectively. Thus the Gumpoong was resistant to root rust. Sunpoong has a high yielding property. Its average root weight is 70.6 g for 6-yr-old roots. Its yield is 2.9 kg/$1.62m^2$ and the rate of heaven- and earth-grade product is 20.9%, which is very high compared to 9.4% for Yunpoong. Sunone is resistance to root rot and the survival rate of 4-yr-old roots was 44.4% in 1997, whereas that of the violet-stem variant landrace was 21.7%. Sunhyang has content of arginyl-fructosyl-glucose (AFG), which produces the unique scent of red ginseng, is $95.1{\mu}mol/g$ and greater than the $30.8{\mu}mol/g$ of Chunpoong in 6-yr-old plants. Sunun and Cheongsun are being nurtured to protect genetic resources. Conclusion: Developed ginsneg varieties will be used as the basis for the protection of genetic resources and breeding.

EST-SSR 마커를 이용한 인삼 품종과 육성계통의 유전적 다형성 및 유연관계 분석 (Analysis of Genetic Polymorphism and Relationship of Korean Ginseng Cultivars and Breeding Lines using EST-SSR Marker)

  • 방경환;서아연;정종욱;김영창;조익현;김장욱;김동휘;차선우;조용구;김홍식
    • 한국약용작물학회지
    • /
    • 제20권4호
    • /
    • pp.277-285
    • /
    • 2012
  • In this study, Expressed Sequence Tag-Simple Sequence Repeat (EST-SSR) analyses were used to clarify the genetic polymorphisms among Korean ginseng cultivars and breeding lines and to classify them into distinct genetic groups. Polymorphic and reproducible bands were produced by 14 primers out of total 30 primers used in this study. Fourteen EST-SSR loci generated a total of 123 bands. Amplified PCR products showed the highly reproducible banding patterns at 110~920 bp. The number of amplified bands for each EST-SSR primers ranged from 2 to 19 with a mean of 8.8 bands. P26 and P35 primers showed 13 and 12 banding patterns, respectively. The number of alleles for each EST-SSR locus ranged from 1.67 to 2.00 with a mean of 1.878 alleles. P34 and P60 primers showed the highest and the lowest genetic polymorphism, respectively. Cluster analysis based on genetic similarity estimated by EST-SSR markers classified Korean cultivars and breeding lines into 4 groups. Group included Gopoong and Chunpoong and 9 breeding lines (55%), group included 2 breeding lines (10%), group included 3 breeding lines (15%), group included Gumpoong and 3 breeding lines (20%). Consequently, the EST-SSR marker developed in this study may prove useful for the evaluation of genetic diversity and differentiation of Korean ginseng cultivars and breeding lines.